The SIF Physics Active Learning Team has been working hard this year to improve the instruction in our physics classes.
Fellow SIF Saif Ali has been working diligently on analyzing and coding student survey data from introductory physics labs to find patterns and ways to improve the classes’ learning potential. This data is sure to prove invaluable in efforts to revamp and reorganize the physics labs and studio (SCALE UP) classes. You can read more about Saif’s project on his blog.
My personal project was to help update the way we train our graduate TAs and undergraduate LAs (learning assistants) in physics classes. The results of the interventions we employed to help train these instructors in active learning and student modes of thinking are still preliminary but my sense was that they were a resounding success. Many of the results of this work will be published this summer so I will have to hold off on posting some of the details just yet.
Over the course of the year, I wrote and helped to facilitate seven roleplay activities designed to help teach TAs and LAs about physics pedagogical content knowledge in a two-semester seminar class about teaching physics. In the roleplays, the TAs and LAs prepared a skit with certain parameters that tackled topics such as how to increase participation among students, how to ask “good” questions that stimulate student thinking, getting students to explain ideas to each other, and checking for understanding. The roleplays simultaneously looked at common student misconceptions about physics concepts and how to help students build a bridge to the correct conceptual understanding. I can’t post videos of these roleplays here because they are part of an IRB-regulated research project but the videos below show similar (albeit professionally filmed and produced) examples. The videos come from the University of Pennsylvania Center for Teaching and Learning. You can view some examples here, here, and here.
I also observed the TAs and LAs many times over the course of the semester while they taught to give them direct feedback and to try to draw conclusions about what effect the class was having on their teaching skills and behaviors. We also have important survey data from instructors and their students that should give us a more complete picture of what happened this year.
We’ve got big plans for next year too. The Center for Instructional Innovation is refurbishing one of the older physics labs in the Natural Science Center over the summer. This lab was in desperate need of a refresher. Its changes are all being made to facilitate active learning and inquiry-based labs. The tables in the room will be higher, with the exception of one disability-accessible table that is adjustable, which will encourage students to move around and look at the experiments from different angles. Students will also have access to three sides of the table instead of just one side as it is now, which will foster collaboration because students can look at each other and share ideas easier. There will be tools like white boards at each table and screens to help students and instructors share and display their ideas. The possibilities for learning in this updated lab classroom are endless. I can’t wait to teach in it!
I will also be helping to make the teaching physics seminars even better. We will be looking at the possibility of tweaking the roleplay structure to maximize the effectiveness of their teaching capacity. We may also be looking at how to produce videos about concepts in Physics Education Research (PER) like mental models, common misconceptions in physics, etc. That way we can flip the class and move it closer to a completely activity- and discussion-based seminar that will provide both theoretical and practical experience on teaching. We also want to look at ways to make this instructor-training model applicable to other departments at GSU. Hopefully, I can work more closely on other SIF Active Pedagogy projects so we can share what we are learning.
Last month, I wrote Part 1 of a post about how instructors and mentors of undergraduate students in STEM can be responsive to the unique needs of students from underrepresented groups. Students of color, women, gender and sexual minorities (GSMs), and disabled students are among some of the groups that are underrepresented in most STEM fields.
Mentoring and effective teaching both very important to retaining and supporting the professional development of underrepresented minority (URM) students in STEM fields.
Here I will give a few more suggestions to help URM students in STEM by expanding on my previous post.
- Encourage students to engage in professional development and research opportunities. It is so important to have internship and research experience as an undergraduate STEM student if you want to continue into a lucrative and fulfilling career. STEM students who wish to continue into graduate school should have as many research experiences as they can get. These experiences will give students a fairly realistic picture of what graduate research is like. Students can also try out a variety of fields and research environments to get a feel for what subjects interest them most. Research experiences often come from networking and from “knowing someone who knows someone.” If you want to be a good mentor to your students, you should suggest research and internship experiences to all of your students that match their expressed goals and interests. However, it is of particular importance to suggest and recommend these opportunities to URM, who are likely to have had fewer networking opportunities than other students.
- Be responsive to extenuating circumstances that come with belonging to a certain group. Lecture slide designs, test formats, classroom formats, and more — these things are crucially important to consider when thinking about disabled students and they can be unintentionally exclusionary. For example if your slides make heavy use of color, colorblind students may find them difficult to read. If the font you use on tests is of the serif family, your dyslexic students might find it less readable than a simple sans serif font like Helvetica. Being available to your students so that they feel comfortable letting you know what reasonable accommodations they need is important because students know more about what they need than you do. This can be as simple as adding a line in your syllabus stating that you are “happy to provide accommodations to students” or announcing on the first day of class ways for students to contact you to talk about accommodations. The best and easiest way for instructors to help disabled students is to think about these things on the front end, while you are planning and making materials for your class. Using the principles of Universal Design for Learning (UDL), which I wrote about here, can serve as a guide for helping both disabled and non-disabled students to engage with content in multiple ways and learn more effectively. If you feel lost when designing accommodations or inclusive lesson materials, you can always reach out to your campus’s office of disability services. GSU’s Disability Services Office can be found here.
- Recognize that exercising cultural competency does not mean lowering the bar academically. Supporting URMs in STEM majors does not mean that you should lower standards. URM students are just as competent as students from majority groups. Acting otherwise is not only false but insulting and harmful. The best way to foster high achievement among URMs is to set high, realistic expectations and to follow through with solid, evidence-based teaching and mentoring practices. When setting high expectations for disabled students, it is important to draw distinctions between a high intellectual bar and a high physical bar. Asking students to do copious amounts of work that will practically guarantee sleep loss and health sacrifices is not reasonable. Asking students to perform independent experiments in class after being given a little background knowledge or make meaningful connections between different concepts are reasonable expectations.
- Be aware of power imbalance. As a mentor or an instructor, you are in a position of greater power relative to your students. You can use that position for good things like advocating for them, introducing them to important people, or putting a good word in for recommendation letters. However, you should always keep in mind not to overstep your bounds. You are not your student’s friend. You can be their ally, mentor, teacher, etc. but you can’t be their friend. The mentor relationship goes one way: they cannot do personal favors for you like babysitting your kids, washing your car, or picking you up from the airport. Through conversations and collaborations, however, you and your mentee/student are sure to learn a great deal from each other. Here is a great guide on how to be a highly effective mentor.
- Actively educate yourself on issues that affect your students and take concrete steps to break down the barriers that stand in their way. Listening to your students and listening to the pulse of your field are crucial to being an effective, empathetic mentor or instructor. Read published journal articles and news pieces about race, gender, class, ability, sexuality, etc. issues within the context of society as a whole and in the context of your field. These things affect your students profoundly. When the sexual harassment scandals recently rocked the Astronomy community or when a Nobel laureate and respected scientist made sexist comments about women in science at an event for women in science journalism, you can bet that women in those fields (and women students who were thinking about going into those fields) were affected by that. When racist scandal after racist scandal surfaces on college campuses all over North America, you can bet that your students of color are affected by that. When young people are told that being a scientist means sacrificing your health, your personal life, and your possible plans to have a family, your students hear that. These things add up to an environment that makes URM students feel like they are not welcome in the field. Using your position of relative power, you can and should take steps to improve the environment for your students.
These are just a small selection of concrete steps that mentors and instructors of URMs in STEM can take to help ensure their success. If you find something crucial that I am missing, please put it in the comments below.
Technology has the potential to enhance learning in all subjects and at all age levels. When used properly, technology can improve the ability of students to engage with the material in a meaningful deep way; it can also be a powerful tool for instructors to track activity, discussion, and progress. It also opens the door to allowing students to have multiple forms of engagement with the material, which enhances learning immensely. Importantly it can allow all students to be included in the learning process.
But what do you do as an instructor if you lack the resources to upgrade your class materials? In this post, I have compiled some practical advice for college instructors who are looking to incorporate useful technology into their classrooms on a limited budget.
Photograph courtesy of Arne Kuilman/Flickr, Creative Commons license
- Use your students’ personal gadgets. You might want to survey your class at the beginning of the semester about their technology ownership and skills. Most students have a smartphone or a laptop. However, if some students do not own the tech you want to use, you can structure your class activities such that they have to work in groups and share technology. This will give you the added benefit of collaborative learning.
- Assign homework that uses technology. By assigning videos, online tutorials, or readings outside of class, students will be able to engage with the material in multiple ways, which greatly enhances learning potential. It also allows you to help with the stuff that requires immediate feedback – problem solving, discussions, break-out sessions – during class time and leave the content learning for outside of class. GSU students have access to computers in the Library and many other locations on campus, even if they do not personally own a computer.
- Maintain a class blog or website and require students to engage with it regularly. This can be the way you communicate with students, add class notes, link to or embed relevant video, and have discussions.
- Have students create their own blogs or vlogs. Students can write about the class or record themselves talking and have discussions with other students in the comments. GSU students can create a free blog or can use YouTube to post videos.
- Have students produce an audio or video podcast. GSU students can check out audio and video equipment from the Digital Aquarium, and can record in professional booths there after completing a brief training session. If you are at another institution, your students likely have access to similar resources.
- Make use of smartphone and tablet apps in class (assuming all of your students have smartphones). Apps like eClicker allow instructors to ask a question during class and use smartphones as answer clickers to get immediate feedback from students.
- Use Google Docs to allow student to provide constructive criticism to others and to edit their peers’ writing.
- Use social media to enhance learning and directly connect with students. GSU has a Yammer network where instructors can create groups where students can have discussions and collaborate on projects. With Twitter, you can have a class hashtag so that students can have discussions in concurrent with classwork or homework.
- Celebrate your students’ accomplishments and projects using social media or your class website (with their permission). This can be a great way to build a supportive classroom culture.
What ideas do you have about low-cost ways to integrate technology into your classrooms? I am interested to hear all of your ideas in the comments.
Traditional instructional design is aimed at designing curriculum and course materials to help the average student learn. As more cognitive learning research emerges everyday showing us that the “average student” does not exist, the goals of instructional design need to shift. Not only that, but the traditional instructional design model that attempts to adapt students to the rigid confines of the classroom is based on certain assumptions about the nature of disability that may not be entirely accurate.
Source: https://assistivetechnologytidbits.wikispaces.com/About+UDL%5B/caption%5D
To explain this, it is useful to take a look at the two dominant models with which people view disability. The first is the medical model of disability, which holds that there is something intrinsically wrong with a disabled person that keeps them from success that can sometimes be fixed via medical techniques. Traditional instructional design holds that disabled students must be adapted to the classroom in order to learn, or kept entirely separate from the other. In the past, education of the disabled has been dominated by separate learning from neurotypical students so that the disabled students will not be a “distraction” to the other students. Within this framework is a fundamentally ableist view that disabled students are not capable of the same caliber of work as non-disabled students and that their presence in the classroom is a nuisance rather than a fundamental right.
Another prominent model of disability is the social model, which says that disabled people are far more disabled by the barriers put up by society than they are by their disability. Many adherents to the social model believe that with proper accommodations and a shift in the way we think about society and productivity, most of the negative aspects of being disabled could be eliminated.
[caption id="attachment_67" align="aligncenter" width="600"]
Many disabled people have rejected this model. (From the Taxi Driver Training, Democracy, Disability and Society Group, UK)
The social model of disability sees disabilities as normal aspects of life, not medical problems requiring “treatment,” with the real problems coming from inaccessibility and ignorance of disabled people. (From the Taxi Driver Training — Democracy, Disability and Society Group, UK). Source: The Social vs. Medical Model of Disability, Communities Will Be Forced to Choose
One extension of the social to the arena of education has been Universal Design for Learning, or UDL, movement. The basic premise of UDL is that it is possible and desirable to design learning experiences such that it works across a wide variety of learners and abilities. The UDL movement is focused on making sure that students who have been marginalized, including disabled students, have the opportunity to learn. It achieves this by completely reframing the way we think about learning.
UDL has three basic guiding principles:
- Provide multiple representations of concepts by providing options for perception; language, mathematical expressions, and symbols; and comprehension. There is no universal way to present information such that everyone understands so it is best to provide many different demonstrations of learning.
- Provide for multiple means of action or expression during the learning process by providing options for physical action, expression and communication, and executive functions.
- Provide for multiple means of engagement by providing options for recruiting interest, sustaining effort and persistence, and self-regulation.
When designing courses, instructors use the three guiding principles and consider the components of the course, including the goals, materials, teaching methods, and means of assessment in the course. Often the best way to implement the UDL strategies is by the proper use of technology to provide meaningful learning experiences. Resources like the UDL Tech Toolkit Wiki provide examples of technology resources that instructors can use to make courses more accessible to students. Some examples include using tablets or e-readers, digital textbooks, text-to-speech applications, computer-based visual simulations, or online video mini-lectures. Technology should not be used to make things more complicated or flashy, but rather to offer more flexibility for learning. With proper implementation of UDL principles and supporting technology, not only will disabled students experience an equal opportunity at learning, but all students will have a richer, more fulfilling learning experience.