Posts Tagged ‘inclusion’

Being responsive to the needs of URM students: Part 2

Last month, I wrote Part 1 of a post about how instructors and mentors of undergraduate students in STEM can be responsive to the unique needs of students from underrepresented groups. Students of color, women, gender and sexual minorities (GSMs), and disabled students are among some of the groups that are underrepresented in most STEM fields.

Mentoring and effective teaching both very important to retaining and supporting the professional development of underrepresented minority (URM) students in STEM fields.

Here I will give a few more suggestions to help URM students in STEM by expanding on my previous post.

  1. Encourage students to engage in professional development and research opportunities. It is so important to have internship and research experience as an undergraduate STEM student if you want to continue into a lucrative and fulfilling career. STEM students who wish to continue into graduate school should have as many research experiences as they can get. These experiences will give students a fairly realistic picture of what graduate research is like. Students can also try out a variety of fields and research environments to get a feel for what subjects interest them most. Research experiences often come from networking and from “knowing someone who knows someone.” If you want to be a good mentor to your students, you should suggest research and internship experiences to all of your students that match their expressed goals and interests. However, it is of particular importance to suggest and recommend these opportunities to URM, who are likely to have had fewer networking opportunities than other students.
  2. Be responsive to extenuating circumstances that come with belonging to a certain group. Lecture slide designs, test formats, classroom formats, and more — these things are crucially important to consider when thinking about disabled students and they can be unintentionally exclusionary. For example if your slides make heavy use of color, colorblind students may find them difficult to read. If the font you use on tests is of the serif family, your dyslexic students might find it less readable than a simple sans serif font like Helvetica. Being available to your students so that they feel comfortable letting you know what reasonable accommodations they need is important because students know more about what they need than you do. This can be as simple as adding a line in your syllabus stating that you are “happy to provide accommodations to students” or announcing on the first day of class ways for students to contact you to talk about accommodations. The best and easiest way for instructors to help disabled students is to think about these things on the front end, while you are planning and making materials for your class. Using the principles of Universal Design for Learning (UDL), which I wrote about here, can serve as a guide for helping both disabled and non-disabled students to engage with content in multiple ways and learn more effectively. If you feel lost when designing accommodations or inclusive lesson materials, you can always reach out to your campus’s office of disability services. GSU’s Disability Services Office can be found here.
  3. Recognize that exercising cultural competency does not mean lowering the bar academically. Supporting URMs in STEM majors does not mean that you should lower standards. URM students are just as competent as students from majority groups. Acting otherwise is not only false but insulting and harmful. The best way to foster high achievement among URMs is to set high, realistic expectations and to follow through with solid, evidence-based teaching and mentoring practices. When setting high expectations for disabled students, it is important to draw distinctions between a high intellectual bar and a high physical bar. Asking students to do copious amounts of work that will practically guarantee sleep loss and health sacrifices is not reasonable. Asking students to perform independent experiments in class after being given a little background knowledge or make meaningful connections between different concepts are reasonable expectations.
  4. Be aware of power imbalance. As a mentor or an instructor, you are in a position of greater power relative to your students. You can use that position for good things like advocating for them, introducing them to important people, or putting a good word in for recommendation letters. However, you should always keep in mind not to overstep your bounds. You are not your student’s friend. You can be their ally, mentor, teacher, etc. but you can’t be their friend. The mentor relationship goes one way: they cannot do personal favors for you like babysitting your kids, washing your car, or picking you up from the airport. Through conversations and collaborations, however, you and your mentee/student are sure to learn a great deal from each other. Here is a great guide on how to be a highly effective mentor.
  5. Actively educate yourself on issues that affect your students and take concrete steps to break down the barriers that stand in their way. Listening to your students and listening to the pulse of your field are crucial to being an effective, empathetic mentor or instructor. Read published journal articles and news pieces about race, gender, class, ability, sexuality, etc. issues within the context of society as a whole and in the context of your field. These things affect your students profoundly. When the sexual harassment scandals recently rocked the Astronomy community or when a Nobel laureate and respected scientist made sexist comments about women in science at an event for women in science journalism, you can bet that women in those fields (and women students who were thinking about going into those fields) were affected by that. When racist scandal after racist scandal surfaces on college campuses all over North America, you can bet that your students of color are affected by that. When young people are told that being a scientist means sacrificing your health, your personal life, and your possible plans to have a family, your students hear that. These things add up to an environment that makes URM students feel like they are not welcome in the field. Using your position of relative power, you can  and should take steps to improve the environment for your students.

These are just a small selection of concrete steps that mentors and instructors of URMs in STEM can take to help ensure their success. If you find something crucial that I am missing, please put it in the comments below.

Being responsive to the needs of URM students: Part 1

Recent research has shown that having greater diversity in terms of race, ethnicity, gender, ability, and thought greatly improves the output of ideas in workplace and educational environments. (Incidentally, diversity of thought often comes naturally after ensuring diversity along other lines.) In her TEDx talk “The Future of STEM Depends on Diversity,” Nicole Cabrera talks about reasons why diversity in STEM fields doesn’t just make sense from an ethical perspective but also from an economic perspective. You can also check out John Gussman’s presentation called “Diversity and the College Experience” or his book of the same name for information on why diversity matters at the university level.

 

 

It’s clear that diversity in STEM fields and education is a good thing for intellectual, economic, and personal progress in those fields. Diversity initiatives in the classroom that do not respond to the unique needs of marginalized students, however, are doomed to fail. This means that the identities of professionals and students in STEM fields should matter a lot when we design our lessons and mentor students. So how can we as educators in STEM classrooms improve the climate for students hold marginalized identities in order to clear a path for in STEM disciplines and careers? I have collected a few tips below that are specifically aimed at instructors and mentors who mostly work with undergraduate students in STEM from underrepresented minority (URM) backgrounds.

  1. Take steps in your classroom to mitigate stereotype threat. Stereotype threat occurs when someone feels that they may be falling into stereotypes about their identity group. Stereotype is related to ideas about the supposed differences in intelligence between various identity groups (which don’t actually exist). Many people claim that they are “just not a math/science person.” However, there is no such thing as a math or science person. There is a large body of evidence saying that intelligence is malleable, meaning that it is not fixed and can change over time due to changes in environment. Furthermore, researchers have demonstrated repeatedly that telling students that intelligence is malleable actually makes students perform better in math and science classes. There are many lessons that instructors have developed for teaching students about malleable intelligence. You can find a good example here.
  2. Approach your teaching (and your research) while keeping the racist, sexist, and ableist history of science in mind. Astrophysicist and activist Dr. Chanda Prescod-Weinstein has compiled a seminal list of resources called the “Decolonising Science Reading List” for scientists who want to educate themselves on the narrative of science in the context of racism and imperialism. I cannot recommend this list of Dr. Prescod-Weinstein’s writings highly enough.
  3. Encourage students to join groups of STEM students and professionals who share their backgrounds. Students can join groups like SACNAS (Society for the Advancement of Chicanos/Hispanics and Native Americans in Science) or NSBP (National Society of Black Physicists). Many national STEM organizations hold conferences where students can present their own research and connect with mentors in their field who share their background. Most of these groups offer financial support to students who want to attend the conferences but cannot afford to do so.
  4. As a classroom instructor, use active learning and group activities instead of direct lecturing as much as possible. I wrote about active learning and marginalized students a few months back. Active learning activities improve the performance of all students in science classes but they especially help students from marginalized backgrounds.

The tips above do not address many of the serious inequities that come from systemic, economic, and social factors that keep STEM students from marginalized groups from pursuing STEM careers. It should be noted that these tips are not all-encompassing. They are intended to get people started thinking about these issues. I highly recommend that readers explore the links in the list above for more information from people who are way wiser about these things than I am.

Watch for Part 2 of this list soon!

Let’s talk about active learning and marginalized students.

Active learning is popular in the education research community right now. According to the University of Michigan Center for Research on Learning and Teaching, active learning is a “process whereby students engage in activities, such as reading, writing, discussion, or problem solving that promote analysis, synthesis, and evaluation of class content.” This mode of teaching and learning stands in direct contrast with traditional lecture-style learning, which tends to take place in a lecture hall. The spaces in which the learning takes place are important but the environment of the class is far more important. Active learning environments are centered on students learning by doing, whereas traditional learning environments are centered on the passage of knowledge one way from the instructor to the students. Universities are investing vast resources into constructing classrooms specifically to facilitate active learning environments, often with round tables, whiteboards, and technology  tailored to meet the needs of an active learning classroom.

ALC at U of M

An active learning classroom at the University of Minnesota Minneapolis.

The question: is the investment worth it?  According to a 2014 study published in Life Sciences Educationthe answer is a resounding yes — especially for black and first-generation college students. The researchers implemented a “moderate-structure” change in an undergraduate Biology course, which effectively meant turning the course into an active-learning environment. They found that the performance of all students clearly increased versus a traditional Biology course. This performance increase was especially pronounced in black students and students in the first generation of people in their family to attend college, for whom the achievement gap was halved. The New York Times quoted researcher Kelly A. Hogan, “In a traditional lecture course, [students are] not held accountable for being prepared for class, and they don’t really need to be, because an instructor is going to tell them everything he or she wants them to know. Would you read a report for a meeting if you knew your boss was going to spend 15 minutes summarizing it for you? I know I wouldn’t.” This gets at the main difference between active-learning and traditional classrooms: it levels the playing field by providing for ample in-class and out-of-class engagement with the material, which deepens understanding. The students in the classroom community depend on each other and the learning is more distributed.

Another recent article in the New York Times, entitled “Are College Lectures Unfair?”, examined the inherent biases of the traditional lecture against “undergraduates who are not white, male and affluent”. All students do better in active learning classrooms than in traditional classrooms, but those who are not upper-middle-class white men show significant improvements. This could be due to the active-learning classroom’s tendency to mitigate stereotype threat, a measured phenomenon that affects groups for which there is a stereotype about their abilities and aptitudes in certain tasks or activities. For example, a famous study of women in math classes found that when women are reminded of the stereotype that women are bad at math they perform far worse on math tests than women who are not reminded of this stereotype. Similar research has demonstrated the same effect in black college students and other marginalized groups. One of the main advantages of the active learning classroom over the traditional lecture classroom is that it mitigates the damage of stereotype threat. By constructing an interconnected learning community, active learning classrooms level the playing field without sacrificing the performance of those who are usually high performers.

Where does Georgia State University (GSU) fit into the active learning movement? Georgia State has had remarkable success in the education of students who are typically the least served in higher education as a whole. As one of the most diverse research institutions in the United States, GSU confers more degrees to students of color than any other institution in Georgia. Georgia State’s student body is nearly two-thirds non-white; 30% of students at GSU are in the first generation in their family to attend college and 56% of students receive Pell Grants, which are awarded to students from low-income backgrounds.

Georgia State recently took some actions designed to increase its graduation rate, which directly benefited its most vulnerable students. A 2013 article in The Atlantic examined in depth the specific actions that Georgia State has taken, which has been successful in raising the graduation rate by 22 percent in recent years. These actions include peer tutoring and Supplemental Instruction, among other active learning interventions. Many GSU departments including the Center for Instructional Innovation are designing innovative active learning classrooms and building spaces to accompany these types of changes. As the University moves away from traditional lectures and toward active learning classes, it has the unique opportunity to help students succeed by becoming a leader in the active learning movement.

Hello!

My name is Monica Cook and I am starting a second year as a graduate student in Physics at Georgia State University. I am delighted that I will be working with the Center for Instructional Innovation this year as a Student Innovation Fellow (SIF). I did my undergraduate degree in Physics and Astronomy at the University of Georgia in Athens where I developed a strong passion for physics and for science in general.

I moved to Atlanta in 2014 to begin my graduate program. Currently, I am a research assistant and a teaching assistant who instructs undergraduate physics labs. My main project as a SIF this year will be to help graduate teaching assistants in physics to become even more effective educators in our active learning and traditional classrooms using evidence-based pedagogical techniques and technology. In addition, I will collaborate with other SIFs who are working on similar projects in Active Learning Pedagogies so we can share our ideas.

I am also involved with an organization called Inclusive STEM, which aims to help underrepresented minorities in STEM fields (science, technology, engineering, and mathematics) at GSU overcome barriers to access by providing support. You can learn more about Inclusive STEM here or here. Subjects of inclusion in science education will probably come up at some point in my posts on this blog as students’ intersecting identities are inextricably intertwined with their learning styles.

I welcome sharing of these posts (with attribution and a link back to the original page) and I encourage a dialogue in the comments about anything I write here.