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‘‘Capsule’’: The purpose of the review is to encourage researchers to consider spatial scale in their work.
Abstract

Following the establishment of point measurements of ground-level ozone concentrations have been attempts by many researchers to

develop ozone surfaces. This paper offers a critique of ozone-mapping endeavors, while also empirically exploring the operational scale
of ground-level ozone. The following issues are discussed: aspects of spatial scale; the spatial complexity of ground-level ozone con-
centrations; and the problems of previous attempts at ozone mapping. Most ozone-mapping studies are beset with at least one of the

following core problems: spatial-scale violations; an improper evaluation of surfaces; inaccurate surfaces; and the inappropriate use of
surfaces in certain analyses. The major recommendations to researchers are to acknowledge spatial scale (especially operational scale),
understand the prerequisites of surface-generating techniques, and to evaluate the resultant ozone surface properly.
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1. Introduction

Ozone’s harmful impact on crops, forests, and human
health qualifies it as a serious air pollutant in many
countries. In the United States, for example, ambient
ozone concentrations have been regulated since the
early 1970s by the US Environmental Protection
Agency. At the present time, ozone is measured at
thousands of stationary monitors scattered across the
nation, most of which are located in urban areas. Since
point measurements are limited in their applicability
across Cartesian space, the mapping of ozone levels is a
critical procedure. The resulting surfaces are often used
to inform decisions regarding the protection of public
health and welfare from elevated ozone levels.1 The
generation of surfaces requires an explicit consideration
of spatial scale, but recognition of spatial scale is lack-
ing in the ozone-mapping literature.
The aim of this paper is to present spatial scale in the

context of ozone mapping in order to initiate increased
consideration of spatial scale by researchers in the future.
Therefore, this paper aims to: (1) explore spatial scale; (2)
speculate about the spatial complexity of ground-level
ozone concentrations; (3) discuss the problems of previous
attempts at ozone mapping; and (4) provide recommen-
dation for future ozone-mapping projects. This paper
reviews the ozone-mapping literature and presents origi-
nal research to illustrate the earlier objectives.2
2. The meanings of spatial scale

Spatial scale is the spatial equivalent of temporal
scale. For example, most researchers studying atmo-
spheric phenomena consider spatial scale and temporal
scale simultaneously, thus spatio-temporal processes are
categorized as follows: microscale (up to tens of meters;
up to several hours), mesoscale (tens of kilometers; sev-
eral hours to several days), synoptic scale (hundreds to
thousands of kilometers; several days to several weeks),
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and global scale (thousands of kilometers; several weeks
to several years). Spatial scale has four different mean-
ings: geographic scale, measurement scale, operational
scale, and cartographic scale (Cao and Lam, 1997).3 The
remainder of this paper focuses on geographic scale,
measurement scale, and operational scale; cartographic
scale is not examined, because it has minimal relevance
to the generation of ozone surfaces.

2.1. Geographic scale

Geographic scale is the spatial extent of a study
region. For instance, the development of ozone surfaces
for the Atlanta metropolitan area and the North
American continent would be considered small- and
large-scale studies, respectively. Ozone surfaces have
been developed for geographic scales ranging from
approximately 32–8,000,000 km2 (Table 1). The impor-
tance of geographical scale results from its connection
to measurement scale and operational scale, especially
in the context of surface generation.

2.2. Measurement scale

Measurement scale is the sampling interval used in a
study. In fact, in the case of point measurements (e.g.
ozone samples), it is more appropriate to refer to the
sampling interval rather than measurement scale.
Within nearly all domains, ozone monitors are not
located at fixed intervals. For example, the distance
between ozone monitors in the Atlanta metropolitan
area is highly variable with nearest-neighbor distances
ranging from approximately 8 km to nearly 60 km
(from Tolbert et al., 2000). The density of ozone moni-
tors, which is 13 monitors per 16,000 km2, is equivalent
to having a monitor located every 35 km throughout the
area (Table 1). The sampling interval changes with a
change in the geographic scale, especially when the
geographic scale is originally a city (e.g. City of Atlanta)
and is increased subsequently to include surrounding
areas with fewer monitors.
Resulting from differences in the number of ozone

monitors and the aforementioned range in geographic
scales, the sampling intervals for the ozone-mapping
studies range from approximately 1.5 km to more than
400 km (Table 1). In the context of ozone mapping, a
small sampling interval is preferable for two reasons: it
facilitates accurate spatial interpolation (refer to Sec-
tion 2.3.3) and it is essential for assessing operational
scale.
2.3. Operational scale

2.3.1. Overview of operational scale and semivariograms
Operational scale or ‘‘scale of action’’ refers to the

spatial extent at which a particular phenomenon (e.g.
ground-level ozone) operates. Operational scale and
spatial complexity are inversely related, thus a phe-
nomenon has a small operational scale if its surface is
dominated by small-scale (geographic) variations.
An essential tool for examining operational scales is an

experimental semivariogram, which is a plot of semivar-
iance against spatial lag.4 Most semivariograms have a
nugget, range, and sill (Fig. 1). The nugget is a function of
measurement errors and differences in values among loca-
tions separated by distances much shorter than the sample
spacing (Burrough and McDonnell, 1998). The sill is the
part of the semivariogram having the most semivariance,
which indicates that positive spatial autocorrelation
among the sample points has disappeared.5 Finally, the
range is the spatial lag at which the sill is reached. Within
the range, positive spatial autocorrelation increases with
an increase in spatial lag, while outside the range spatial
autocorrelation is negligible and there is little change in
spatial autocorrelation with an increase in spatial lag.
Semivariograms are appropriate for identifying the

range of spatial scales within which the variable is spa-
tially dependent (Bian and Walsh, 1993), and opera-
tional scales are represented by ‘‘break points’’ in the
semivariogram (Lam and Quattrochi, 1992). The range
is a major ‘‘break point,’’ thus the range is equivalent to
one of the operational scales.
For many phenomena the requirement of values for

many spatial locations prohibits the construction of a
robust semivariogram that can be used to determine
operational scale. Burroughs and McDonnell (1998)
note that in order to produce even a stable semivario-
gram a sampling network should have at least 50–100
points. There are an infinite number of pairs at each
spatial lag (or distance class), thus the sample pairs
within each distance class should be a reasonable repre-
sentation of a population of pairs. The central limit
theorem implies that at least 100 pairs should be used to
estimate the semivariance for each distance class (Grif-
fith and Lane, 1999), while Cressie (1991) recommends a
minimum of 30 pairs per distance class. Spatial model-
ing can be used to overcome the earlier sample-based
limitation, and the next section provides an example of
modeled ozone and operational scale.
3 Cartographic scale pertains to the representative fraction of a

map (e.g. 1/10,000,000 is a small-scale map), and is thus related

directly to spatial resolution [i.e. smallest distinguishable part in an

object (Tobler, 1988)], which in turn is associated with operational

scale.
4 The semivariance equation is as follows:

� ¼
1

2npairs
�
Xi¼n

i¼1

xi � xiþhð Þ
2

where n is the number of pairs at spatial lag h, xi is the value at location i,

and xi+h is the value at a location within spatial lag h of xi.
5 Positive spatial autocorrelation occurs when values at nearby

points are more similar than are values at distant points.
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Table 1

Characteristics of published studies that have spatially interpolated/predicted ambient ozone levels. Relative error is calculated by dividing the

RMSE (root mean squared error) by the average observed value; those values are presented in the manuscripts either in tabular or graphical form. If

RMSE is not available, MAE (mean absolute error) is used instead. MAE yields an underestimate of relative error
Author(s)
 Location
 Geographic

scale
Number of

monitors
Sampling

interval
Mapping

method
Spatial

resolution
Relative

error (%)
Adams et al. (1985)
 Conterminous USA
 �8,000,000
 a
 a
 K
 a
 a
Lefohn et al. (1987)
 Conterminous USA
 �8,000,000
 a
 a
 OK
 �50
 22b
Lefohn et al. (1988)
 Southeastern USA
 �4,000,000
 a
 a
 OK
 �50
 20b
Abbey et al. (1991a)
 California, USA
 �424,000
 126
 a
 IDW
 a
 a
Abbey et al. (1991b)
 California, USA
 �424,000
 126
 a
 IDW
 a
 a
McKendry (1993)
 Montreal, Quebec, Canada
 �2000
 9
 �15
 C
 a
 a
Bower et al. (1994)
 United Kingdom
 �245,000
 18
 �120
 DW
 25
 a
Brown et al. (1994)
 Ontario, Canada
 �1,070,000
 7
 �400
 BI
 a
 a
Casado et al. (1994)
 Southeastern USA
 �700,000
 29
 �30
 OK
 8
 a
Guttorp et al. (1994)
 Sacramento, CA, USA
 �10,600
 17
 �25
 STM
 a
 a
Loibl et al. (1994)
 Austria
 �84,000
 114
 �27
 NLR, K
 1
 19b,c
Rosenbaum et al. (1994)
 Conterminous USA
 �8,000,000
 565
 �120
 PGO
 80
 a
Westenbarger and Frisvold (1994)
 Eastern USA
 �3,120,000
 a
 a
 K
 �50
 a
Brown et al. (1995)
 United Kingdom
 �245,000 km2
 17
 �120 km
 LIR
 1
 a
Duddek et al. (1995)
 Ontario, Canada
 �1,070,000
 21
 �225
 BI
 a
 a
Fowler et al. (1995)
 United Kingdom
 �245,000
 17
 �120
 LIR
 1
 a
Korc (1996)
 Los Angeles, CA, USA
 �48,000
 38
 �35 km
 IDW
 10 km
 a
Loibl and Smidt (1996)
 Austria
 �84,000
 130
 �25 km
 NLR, K
 a
 a
Liu and Rossini (1996)
 Toronto, Ontario, Canada
 �22,500
 19
 �34
 K
 a
 54b
McNair et al. (1996)
 Los Angeles, CA, USA
 �25,000
 37
 �25
 IDW
 a
 36b
Pauly and Drüeke (1996)
 Trier, Germany
 �300
 20
 �4
 UK
 a
 13b
Carroll et al. (1997)
 Houston, TX, USA
 �4600
 12
 �20
 STM
 a
 a
de Leeuw and van Zantvoort (1997)
 The Netherlands
 �34,000
 38
 �28
 IDW
 5
 22%b
Georgopoulos et al. (1997)
 Mid-Atlantic USA
 �75,000
 38
 �45
 OK
 5
 a
Hogsett et al. (1997)
 Eastern USA
 �4,700,000
 294
 �125
 OA
 20
 a
Lefohn et al. (1997)
 Southeastern USA
 �750,000
 a
 a
 K
 �50
 a
Liu et al. (1997)
 San Diego, CA, USA
 �32
 13
 �1.5
 K, IDW
 a
 a
Godzik (1997)
 Kraków, Poland
 �3254
 18
 �13
 K
 a
 a
Phillips et al. (1997)
 Southeastern USA
 �870,000
 235
 �60
 CK, IDW, K
 20 km
 24b,d
Christakos and Vyas (1998a)
 Eastern USA
 �2,800,000
 1228
 �48
 S/TRF
 a
 1.4e
Christakos and Vyas (1998b)
 Eastern USA
 �2,800,000
 1228
 �48
 S/TRF
 25 km
 a
Meiring et al. (1998)
 Sacramento, CA, USA
 �21,000
 32
 �25 km
 STM
 12
 a
Mulholland et al. (1998)
 Atlanta, GA, USA
 �16,000
 10
 �40
 UK
 3
 a
Nikiforov et al. (1998)
 Conterminous USA
 �8,000,000
 1112
 �85 km
 LR
 a
 13f
Sun et al. (1998)
 Ontario, Canada
 �1,070,000
 21
 �225
 BI
 a
 a
Zidek et al. (1998)
 Southern Ontario, Canada
 a
 22
 a
 BI
 a
 a
Hopkins et al. (1999)
 Houston, TX, USA
 �50,000
 20
 �50
 IDW, K
 a
 a
Royle and Berlinger (1999)
 Midwestern USA
 �980,0000
 147
 �80
 HSM
 �50
 a
Duc et al. (2000)
 Sydney, Australia
 �4000 km2
 13
 �17
 K
 a
 a
Kuik et al. (2000)
 The Netherlands
 �34,000
 a
 a
 IDW
 a
 a
Pissimanis et al. (2000)
 Athens, Greece
 �1,750
 9
 �14 km
 a
 a
 a
Tolbert et al. (2000)
 Atlanta, GA, USA
 �16,000
 10
 �40
 UK
 3
 a
Laurence et al. (2001)
 Eastern USA
 �2,800,000
 3
 �305
 a
 10
 a
Le et al. (2001)
 SW British Columbia, Canada
 �4800
 23
 �14
 BI
 a
 a
Lee and Hogsett (2001)
 Western USA
 �3,420,000
 204
 �130
 LOR
 2
 25b,d
Schichtel and Husar (2001)
 Conterminous USA
 �8,000,000
 1415
 �75
 IDW
 40
 a
Varns et al. (2001)
 Dallas, TX, USA
 �25,000
 36
 �26
 IDW
 a
 a
Bytnerowicz et al. (2002)
 Carpathian Mtns., Europe
 �158,000
 32
 �70
 CK
 a
 20f
Coyle et al. (2002)
 United Kingdom
 �245,000
 80
 �55
 S, LIR
 1 km
 a
Diem and Comrie (2002a,b)
 Tucson, AZ, USA
 �11,000
 8
 �37
 MLR
 0.5
 7g
BI=Bayesian Interpolation; C=Contouring; CK=Cokriging; D=Distance Weighting; HSM=Hierarchical Spatial Model; IDW=Inverse-Distance Weighting;

IDW2=Inverse-Distance Weighting Squared; K=Kriging; LIR=Linear Regression; LOR=Loess Regression; MLR=Multiple Linear Regression; NLR=Nonlinear

Regression; OA=Overlay Analysis; OK=Ordinary Kriging; PGO=Point-to-Grid Overlay; S=Spline; S/TRF=Spatiotemporal Random Field; STM=Spatio-Tem-

poral Model; and UK=Universal Kriging.
a Not reported or cannot be determined from information presented in the article.
b Cross validated.
c Based on values at 10 sites; unknown if those sites were selected at random.
d Used MAE instead of RMSE.
e Based on values at four sites; unknown if those sites were selected at random.
f Not cross validated.
g Not a true cross validation.
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2.3.2. Operational scale of ground-level ozone
As with most other spatial phenomena and certainly

with other atmospheric pollutants, the operational scale
of ground-level ozone is unknown. An exceptionally dense
network of monitors (i.e. sampling interval on the order of
1 km) is needed to assess operational scale. As can be
gleaned from Table 1, sufficiently dense networks are not
available anywhere, especially for networks of continuous
ozone monitors. As noted earlier, preliminary assessments
of operational scale can be achieved with modeled data,
and the chosen data for this study come from a spatial-
modeling study described in detail in Diem and Comrie
(2002a). In that study, ozone concentrations are estimated
at a spatial resolution of 0.5 km throughout the Tucson,
Arizona region. With an overall relative error of 7%, the
surfaces are accurate enough to allow further exami-
nations of the estimated ozone concentrations. Although
over 700 summer days are considered inDiem and Comrie
(2002a), data from only 5 days are analyzed in this study.6

For this investigation, the Tucson region is divided
into three subregions: upwind, source-intensive, and
downwind. The subregions are delineated to enable sta-
tistical analyses across the region, which, in turn,
increase the robustness of the results and potential for
applicability to other regions. The area of interest is
centeredon theCityofTucson,which contains abulkof the
reliable, predicted ozone concentrations (Diem and Com-
rie, 2002a). The subregions reflect their geographical rela-
tionship to the city. Since the source-intensive subregion is
situated over the city, it contains a large proportion of the
Tucson region’s ozone precursor emissions (Diem and
Comrie, 2002b). Northwest of the city is the upwind sub-
region, while east of the city is the downwind subregion.
Semivariograms, which are constructed for each clus-

ter/subregion combination, are used as the primary tool
for assessing operational scale. Each of the 15 combi-
nations has at least 456 sample points, thereby easily
enabling the construction of stable semivariograms. In
addition, correlograms are constructed and used subse-
quently to determine the sampling interval at which
positive spatial autocorrelation is no longer statistically
significant (�=0.05).7 The correlogram-derived infor-
mation is used to corroborate findings from the semi-
variogram examinations. Semivariance and spatial
Fig. 1. Idealized semivariogram showing the nugget, range, and sill.
6 Each day epitomizes one of the five ozone clusters discussed in

Diem and Comrie (2002a). The clusters have the following character-

istics: clusters 1, 2, and 3 occur most frequently in mid- to late-summer

and have relatively high ozone concentrations; and clusters 4 and 5

occur most frequently in early-summer and have relatively low ozone

concentrations. Each day examined in this study also has relatively

low prediction errors at the core ozone monitoring sites. The five

representative days are as follows: 2 July 1999 (Cluster 1); 26 August

1995 (Cluster 2); 14 August 1998 (Cluster 3); 12 June 1998 (Cluster 4);

and 18 June 1997 (Cluster 5).
7 A correlogram is a plot of spatial autocorrelation against spatial

lag. The correlogram equation is as follows:

I ¼
nindividuals
npairs

�

npairs �
Pi¼n

i¼1

Pj¼n

j¼1

xi � xð Þ xj � x
� �

Pi¼n

i¼1

xi � xð Þ

where I is Moran’s I, n is the number of locations, npairs is the number

of pairs within a certain spatial lag, xi is the value at location i, xj is the

value at location j, and x is the global mean. Moran’s I values are

bounded by �1 and +1 with �1 indicating extremely-strong, negative,

spatial autocorrelation and +1 indicating extremely-strong, positive,

spatial autocorrelation.
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autocorrelation are calculated for each 0.5-km interval
up to a spatial lag of 12 km. The resultant semivario-
grams and correlograms are shown in Figs. 2 and 3.
The semivariograms and correlograms illustrate

quantitatively the strong spatial dependence among the
predicted ozone concentrations. Each semivariogram
exhibits multiple ‘‘break points’’, with the first point
representing theoretically the operational scale for a
given subregion/cluster combination. Each correlogram
has a point at which the spatial autocorrelation coeffi-
cient (i.e. Moran’s I) becomes statistically equivalent to
zero. This point is the distance at which positive spatial
autocorrelation ceases, thus it also represents the
operational scale.
The semivariogram and correlogram analyses provide

converging results, with the operational scale values
ranging from 1.5 to 8.0 km (Table 2). The overall
operational scale, which is weighted by the frequency of
occurrence of the five clusters, is between 5.0 and 6.0
km. These values are not direct artifacts of the sub-
jectivity-laden process of selecting predictor variables
for the multiple linear regression (MLR) modeling
(Diem and Comrie, 2002a). If the spatial influences of
the predictor variables are weighted by their respective
standardized coefficients and if the resultant average value
equals the operational scale, then the operational scale
values may not be valid. As it stands, the average value is
8.3 km, thus the operational scale values are not biased
greatly by the initial selection of predictor variables.
It is not the intent of this paper to discuss each of the

estimated operational scale values. All values have been
presented to illustrate the robust nature of the resulting
average value (�5.5 km). Nevertheless, to provide fur-
ther clarification of operational scale assessment, atten-
tion is focused on the semivariograms and correlograms
of Cluster 1. This cluster exemplifies the typical spatial
dependencies of the upwind, source-intensive, and
downwind subregions. Analyses of the semivariograms
(Fig. 2a–c) reveal ‘‘break points’’ at 6.0, 5.0, and 5.5 km,
respectively, for the three subregions. Concerning the
correlograms, statistically-significant positive spatial
autocorrelation does not exist after 7.0, 6.0, and 5.5 km
for the subregions. Therefore, based on the earlier
information the average operational scale for Cluster 1
is approximately 6 km.
Although the estimation of operational scale is based

on analyses of modeled data and should thus be treated
with some skepticism, the results do agree with findings
from other studies. Pauly and Drüeke (1996) construct a
semivariogram using daily ozone concentrations mea-
sured at 20 ozone passive samplers in the city of Trier,
Germany. The range of the semivariogram is approxi-
mately 6 km. These results, however, are not especially
strong because the sampling network consisted of only
20 sample points. McNair et al. (1996) note that for the
Los Angeles basin significant variability in observed
pollutant concentrations does occur at spatial lags
comparable to and smaller than the airshed model’s
5-km grid cells. For example, two ozone monitoring
sites in the Long Beach area located 4.8 km apart had
ozone measurements that differed by up to 50%. In
addition, significant differences existed between several
pairs of monitors located within 10 km of each other in
the Los Angeles basin (McNair et al., 1996). Based on
the earlier information, it appears that the operational
scale of ground-level ozone in a typical metropolitan
area is less than 10 km. This spatial complexity is con-
trolled by local sources of ozone precursors (especially
nitrogen oxides), topography, micro-meteorology (e.g.
urban canyon effect), and varying rates of ozone
deposition. In remote, forested areas, which are typi-
cally devoid of significant, spatially distributed sources
(e.g. motor vehicles) of nitrogen oxides, one would
expect the operational scale of ground-level ozone to be
much larger than the scale in a metropolitan area.

2.3.3. Surface generation
Various techniques produce surfaces of a phenom-

enon by estimating/predicting values at unsampled
locations based on measurements at sample points.
Common surface-generating techniques include inverse
distance weighting (IDW), kriging (i.e. ordinary kriging,
universal kriging, and cokriging), and regression (e.g.
MLR). In addition to each method having its own set of
drawbacks (Lam, 1983; Diem and Comrie, 2002a), the
proper employment of any method requires careful
consideration of spatial scale, particularly operational
scale.
Kriging is the most popular technique used to create

ozone surfaces. It is employed in 19 of the 50 ozone-
mapping studies listed in Table 1. Kriging estimates
values at unsampled locations using weights reflecting
Table 2

Estimated operational scale for each subregion/cluster combination
Subregion/cluster
 Operational scale (km)
Upwind/1
 6.0
Source-Intensive/1
 5.5
Downwind/1
 5.5
Upwind/2
 6.0
Source-Intensive/2
 8.0
Downwind/2
 8.0
Upwind/3
 5.0
Source-Intensive/3
 7.0
Downwind/3
 5.5
Upwind/4
 6.5
Source-Intensive/4
 4.0
Downwind/4
 5.0
Upwind/5
 1.5
Source-Intensive/5
 6.0
Downwind/5
 6.0
Overall
 5.6
J.E. Diem /Environmental Pollution 125 (2003) 369–383 373



the correlation between data at two sample locations or
between a sample location and the location to be esti-
mated (Myers, 1991). The success of kriging in any
mapping exercise depends greatly on the estimation and
modeling of the semivariogram (Burroughs and
McDonnell, 1998). Not only should the semivariogram
be constructed preferably with information from at least
100 pairs of observations per distance class, but it also
should exhibit low semivariances (i.e. strong spatial
autocorrelation) at small spatial lags. Concomitant with
the strong spatial autocorrelation is the presence of a
range, which, as noted previously, represents the opera-
tional scale. Only spatial lags exhibiting spatial depen-
dence should be considered during kriging; therefore,
the operational scale represents the appropriate search
radius to be used during kriging.
Fig. 2. Semivariograms for the following subregion/cluster combinations: (a) upwind/1; (b) source-intensive/1; (c) downwind/1; (d) upwind/2; (e)

source-intensive/2; (f) downwind/2; (g) upwind/3; (h) source-intensive/3; (i) downwind/3; (j) upwind/4; (k) source-intensive/4; (l) downwind/4; (m)

upwind/5; (n) source-intensive/5; and (o) downwind/5. Semivariance (ppb) is along the y-axis and spatial lag (km) is along the x-axis.
374 J.E. Diem /Environmental Pollution 125 (2003) 369–383



2.3.4. Operational scale and the optimal sampling
interval
The operational scale represents the largest sampling

interval that can be used to ascertain the spatial com-
plexity of a surface. For example, assuming that 5.5 km
is a valid estimate for the operational scale of ozone and
that most of the Tucson region’s population exists
within a 950 km2 area, then at least 30 monitors are
needed to capture sufficiently the spatial complexity of
ozone concentrations in the heavily populated portion
of the region. Theoretically, within the 5.5-km interval
there is considerable redundancy among measured
ozone concentrations. Creating an ozone surface via
kriging would be difficult with the above sampling
scheme, because many more monitors are needed to
construct a semivariogram. If a semivariogram is con-
structed with information from 30 monitors in the Tuc-
son area, the semivariogram should exhibit negligible
spatial dependence.
An alternative mapping method is MLR. Diem and

Comrie (2002a) have shown that MLR is a suitable
spatial-prediction technique provided continuous sur-
faces of variables associated with ambient ozone levels
are available. The operational scale of ozone relates
Fig. 3. Correlograms for the upwind (� � �� � �), source-intensive (——), and downwind (– –) subregions for (a) Cluster 1, (b) Cluster 2, (c) Cluster 3,

(d) Cluster 4, and (e) Cluster 5. Moran’s I is along the y-axis and spatial lag (km) is along the x-axis.
J.E. Diem /Environmental Pollution 125 (2003) 369–383 375



readily to MLR. Since minimal redundancy should be
present in any MLR analysis, the smallest sampling
interval for MLR modeling is the operational scale. For
the Tucson region, a sampling interval of 5.5 km would
be optimal for the prediction of ozone concentrations
using MLR.
If spatial-interpolation techniques, such as kriging,

are to be used to produce an ozone surface, an optimal
sampling interval, which is smaller or equal to the
operational scale, needs to be determined. It is well
known that a decrease in the sampling interval results in
an increase in the number of data points and thus an
increased likelihood of producing a more spatially
complex (and accurate) surface. The surface will have
an increasing magnitude of small-scale variations in
ozone concentrations. It is not practical, however, to
sample ozone concentrations at extremely small inter-
vals, for ozone monitors are expensive to operate. The
costs of materials, sampler maintenance and retrieval in
the field, and laboratory analyses make even ozone
passive samplers costly. Therefore, the optimum sam-
pling interval is the largest interval that produces a sur-
face with the required minimum interpolation error
(Burroughs and McDonnell, 1998). The optimal sam-
pling interval can be determined using results from an
intensive field survey. For example, ozone passive
samplers could be located 1 km apart on a regular grid
covering 100 km2. The samplers would collect daily
ozone levels, thereby enabling the construction of a
semivariogram. The sampling network would yield
4950 total pairs of samplers, and over 300 and 100
pairs would be available at the 1 and 10 km lags,
respectively. An extremely stable semivariogram would
be possible. The optimal sampling interval can be
determined from a stable semivariogram using a pro-
cedure described in Atkinson et al. (1990), which is as
follows:

	 Compute the maximum kriging variance for
sampling intervals at 1-km increments from 1 to
10 km. The maximum kriging variance is an
output of the kriging process, and, in this
example, it would occur at locations farthest
from the samplers.

	 Determine the maximum allowable kriging var-
iance and then select the largest sampling interval
having a kriging variance less than or equal to
this value. One might decide that the maximum
allowable kriging variance is 10% of the average
measured ozone concentration.

The earlier method is just one of the many possible
ways of assessing optimal sampling intervals. All meth-
ods require a dense sampling network and the knowl-
edge of a desired minimum accuracy of the resultant
surface.
To summarize, knowledge of the operational scale of
ground-level ozone can help determine the optimal
sampling interval. In addition, the optimal sampling
interval represents the highest possible spatial resolution
of the resultant ozone surface. For nearly all studies, it
is ideal to produce an ozone surface with a relatively
high spatial resolution.
3. Problems associated with ozone mapping

A review of the ozone-mapping literature reveals
many problems in the development, evaluation, and use
of ozone surfaces. The problems are ubiquitous and can
be placed into the following categories:

	 Spatial-scale violations.
	 Improper evaluation of surfaces.
	 Inaccurate surfaces.
	 Inappropriate use of surfaces in certain analyses.

Critical mapping-related problems conducive to
severe negative consequences are discussed in the fol-
lowing subsections.

3.1. Spatial-scale violations

The five principal ways in which many published
studies have committed spatial-scale violations are as
follows: (1) disregard the linkages among geographic
scale, sample size, and spatial resolution; (2) disregard
spatial autocorrelation issues; (3) improper integration
of data with multiple spatial resolutions; and (4) treat-
ing surfaces as ‘‘reality’’.

3.1.1. Disregard the linkages among geographic scale,
sample size, and spatial resolution
Studies that disregard the linkages among geographic

scale, sample size, and spatial resolution fall into two
categories: studies that employ a spatial-interpolation
technique despite having an ozone monitoring network
that is not large enough to support the technique; and
studies that develop ozone surfaces with spatial resolu-
tions higher than is appropriate. Nearly every study has
committed some aspect of this violation. As can be dis-
cerned through the examination of Table 1, the number
of ozone monitors within any given geographic domain
varies substantially. All studies that use kriging to
develop an ozone surface despite having a small number
of sample points commit this first violation. Multiple
studies (Pauly and Drüeke, 1996; Godzik, 1997; Liu et
al., 1997; Mulholland et al., 1998; Hopkins et al., 1999;
Duc et al., 2000; Bytnerowicz et al., 2002) employ geos-
tatistical techniques even though the semivariogram is
null owing to its creation from an inadequate number of
sample points. For example, Mulholland et al. (1998)
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and Tolbert al. (2000) produce a kriged surface based
on a semivariogram developed using information from
just 10 to 13 monitors in the Atlanta metropolitan area.
It is also common for an ozone surface to be pro-

duced at a falsely high spatial resolution. Kriging is
especially vulnerable to this violation if the modeled
semivariogram is based on extrapolations. Such an
extrapolation occurs between the smallest sampling
interval and the origin of the semivariogram. This vio-
lation is committed by Loibl et al. (1994), Mulholland et
al. (1998), and Tolbert et al. (2000). Loibl et al. (1994)
achieve 1-km resolution with 114 monitors in an
approximately 80,000 km2 domain using nonlinear
regression and kriging; however, it is doubtful that
there is even a single pair of monitors within one kilo-
meter of each other. Mulholland et al. (1998) and Tol-
bert et al. (2000) achieve 3-km resolution with only 10–
13 monitors in a 26,000 km2 domain. As mentioned
previously, the shortest distance between monitors is
approximately 8 km. This violation may be more pre-
valent than is described here, since most studies fail to
note the spatial resolution of the resultant ozone sur-
face (Table 1).

3.1.2. Disregard spatial-autocorrelation issues
Those studies that employ IDW and kriging are par-

ticularly vulnerable to spatial-autocorrelation issues.
IDW, which assigns more weight to nearby points than
to distant points (Myers, 1991), requires spatial auto-
correlation. Kriging also depends on spatial auto-
correlation; hence, as stated previously, a critical
component of kriging is the semivariogram. A useful
semivariogram cannot be developed without the pre-
sence of spatial autocorrelation; the degree of spatial
autocorrelation determines how successful spatial inter-
polation will be (Griffith and Lane, 1999).
Spatial autocorrelation is not mentioned in most

IDW and kriging studies despite its central role. Those
studies that do mention semivariograms acknowledge
spatial autocorrelation implicitly. Semivariograms and
correlograms are needed to assess the efficacy of sur-
face-generating techniques, such as IDW and kriging,
whose success can be predicted somewhat by the pre-
sence or absence of spatial autocorrelation among mea-
sured ozone concentrations.

3.1.3. Improper integration of data with multiple spatial
resolutions and unknown accuracies
Several studies (Loibl et al., 1994; Fowler et al., 1995;

Loibl and Smidt, 1996; Pauly and Drüeke, 1996; Hog-
sett et al., 1997; Phillips et al., 1997; Lee and Hogsett,
2001; Bytnerowicz et al., 2002; Coyle et al., 2002; Diem
and Comrie, 2002a) develop ozone surfaces using ancil-
lary data, such as digital elevation models (DEMs),
pollutant emissions surfaces, and meteorological sur-
faces. The two major problems that stem from the use
of ancillary surfaces are inappropriate ‘‘downscaling’’ of
the data and possible errors in the surfaces.
An example of inappropriate ‘‘downscaling’’ is pre-

sented in Hogsett et al. (1997) and Phillips et al. (1997).
In both studies, an index of ozone-exposure potential is
constructed using county-resolution data of anthro-
pogenic nitrogen oxides (NOx) emissions data. The
studies simply resample the county-resolution NOx data
to 20-km resolution to equal the resolution of surfaces
such as temperature, wind direction, and elevation.
None of the studies that employ ancillary surfaces

attach any accuracy value to those surfaces. Even
though Hogsett et al. (1997) and Phillips et al. (1997)
note that meteorological surfaces are created using a
form of IDW, an evaluation of those surfaces appar-
ently is not conducted. The emissions surfaces used in
Hogsett et al. (1997), Phillips et al. (1997), Coyle et al.
(2002), and Diem and Comrie (2002a) probably have
the most errors of all the ancillary surfaces, yet the
possibility of error-laden emissions surfaces is never
questioned in the literature. Diem and Comrie (2002b)
discuss the development of spatially resolved databases
of pollutant emissions, and a brief glimpse of the data
and methods reveals a high probability for grid cells
having exceedingly inaccurate estimates of emissions.
The inadequacies of the ancillary surfaces are propa-

gated into the ozone surfaces when the ancillary and
derived surfaces are eventually used in spatial applica-
tions. For example, Phillips et al. (1997) use their
derived index as the covariate in a cokriging procedure
despite the fact that cokriging in this instance requires
an accurate, spatially continuous variable that is highly
correlated with ozone concentrations. The accuracy of
the index should have been assessed before using it in a
cokriging procedure (refer to Section 3.2 for a discus-
sion of evaluation metrics). Bytnerowicz et al. (2002) use
invalid ancillary data when attempting to interpolate
ozone concentrations throughout the Carpathian
Mountains. The researchers use cokriging with eleva-
tion as the covariate even though ‘‘elevation does not
necessarily affect [ozone] concentrations in the moun-
tainous terrain (Bytnerowicz et al., 2002: 23).’’ Finally,
Diem and Comrie (2002a) employ up to 10 derived sur-
faces, which are mostly emissions-related, as predictor
variables in multiple linear regression equations used to
predict ozone concentrations. This is a risky practice,
for there is undoubtedly much error present in those
predictor surfaces. The technique in this instance, how-
ever, is not affected greatly by those errors and thus the
resultant ozone surfaces have an acceptable level of
accuracy (refer to Section 3.2 and Table 1).

3.1.4. Treating surfaces as ‘‘reality’’
Another problem associated with the application of

surface-generating techniques, especially spatial inter-
polation (e.g. IDW and kriging), is that the resulting
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ozone surface is an abstraction of ‘‘reality’’ yet the sur-
face is sometimes considered to be a true reflection of
‘‘reality.’’ Spatial-interpolation techniques do not cap-
ture the spatial complexity of ozone surfaces. In addi-
tion to the prominent inaccuracies of ozone surfaces as
discussed in Section 3.3, ozone surfaces produced with
spatial-interpolation techniques are considerably
‘‘smoother’’ than the true (but unknown) surfaces. The
structure of the ozone-monitoring network has a major
influence on one’s ability to develop a ‘‘realistic’’ sur-
face. For example, Bower et al. (1994: 123) note that the
present ozone monitoring network in the United King-
dom ‘‘has not been optimised to reconstruct in detail the
national concentration field for ozone.’’ The limitations
of monitoring networks and interpolation techniques is
not recognized universally, for Westenbarger and Fris-
vold (1994: 2898) state that their results ‘‘provide a
detailed picture of the magnitude and distribution of
acid precipitation and ozone pollution in the eastern
United States’’.

3.2. Improper evaluation of surfaces

Many ozone-mapping studies provide insufficient
metrics for the evaluation of results from ozone map-
ping. This evaluation ‘‘is the process of examining and
appraising the performance by comparing the model’s
concentration estimates to measured air quality data
(Fox, 1981: 600).’’ Some researchers do not even appear
to be aware of the evaluation process, for they do not
provide any evaluation metrics (refer to Table 1). The
dearth of proper evaluation metrics in the literature may
result from the researchers’ unfamiliarity with error
reporting, or it may be a preëmptive measure that
enables avoiding discussion of accuracy. On a positive
note, nearly all researchers who do attempt to assess
accuracy do so with cross-validation procedures.8

Common metrics reported in the ozone-mapping litera-
ture include mean biased error (MBE), mean absolute
error (MAE), root mean squared error (RMSE), corre-
lation coefficient (r), and coefficient of determination
(r2). MBE, which is the average value of the residuals,
indicates the degree of over- or under-prediction. Ide-
ally, MBE should be approximately equal to zero. MAE
and RMSE are similar in that they are measures of
overall error; RMSE is always larger than MAE owing
to its squaring of large residuals. The final two statistics,
r and r2, should not be part of an array of model per-
formance metrics, because the magnitudes of r and r2

are not related consistently to the accuracy of prediction
(Willmott, 1982).
Every study should provide several core evaluation
metrics to facilitate a comparison among ozone surfaces
and thus a comparison of interpolation and prediction
techniques. Willmott (1982) suggests reporting the fol-
lowing statistics: P

-
, O

-
, sp, so, a, b, RMSE, RMSEs,

RMSEu, and d. O
-
is the mean of the observed values. P

-

is the mean of the predicted values. Values for so and sp
are the standard deviations of the observed and pre-
dicted values, respectively. The intercept and slope of
the least-squares regression line (P̂i=a+bOi) are repre-
sented by a and b, respectively. RMSE can be dis-
aggregated into systematic (RMSEs) and unsystematic
(RMSEu) components. In addition, the number of
cases n as well as the relative error RMSE/O

-
should

be reported. An accurate surface has the following
characteristics:

	 P
-

O

-
;

	 sp approaches so;
	 relative error approaches 0;
	 RMSEu approaches RMSE (i.e. most of the dif-

ference between predicted and observed values is
not derived from the mapping method); and

	 d approaches 1.

Surfaces having statistics that deviate substantially
from the earlier guidelines should be treated as invalid
surfaces.

3.3. Inaccurate surfaces

Most mapping studies that do report evaluation
metrics have relatively inaccurate ozone surfaces. Rela-
tive error can be calculated for 13 of the 50 studies. In
this instance, the relative error does not enable a sound
cross-comparison of results, because occasionally MAE
is reported instead of RMSE or the number of cases is
extremely small or both. Calculating relative error using
MAE results in a smaller value than if RMSE were
used, while a small number of cases do not provide an
adequate sample of the population of observation–pre-
diction pairs. Therefore, excluding Christakos and Vyas
(1998a) and Loibl et al. (1994), which provide observed
and predicted values for only 4 and 10 cases, respec-
tively, the range in relative error is from 7 to 54%. The
relative error of 7% reported in Diem and Comrie
(2002a) may be a slight underestimate, since the value is
not derived from a true spatio-temporal cross-vali-
dation. Conversely, the relative error of 54% reported
in Liu and Rossini (1996) may be a substantial over-
estimate; the predicted values are based on interpolation
using values at continuous ozone monitors and the
observed values are from passive samplers.
Surfaces created using IDW or kriging tend to have a

relative error exceeding 20%, thereby providing some
evidence of the inappropriateness of these techniques
8 Cross-validation is the process of obtaining predictions at a

monitor that are not influenced by observations at that monitor.

Cross-validation produces predicted values that are independent of

observed values, which then enables a more realistic assessment of the

accuracy of a surface.
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for the spatial interpolation of ozone levels. A possible
reason for the low-quality surfaces resulting from kri-
ging is that semivariograms do not receive enough
attention from researchers. Semivariograms encapsulate
a substantial amount of spatial-scale information. Dis-
regarding a semivariogram signifies the mistreatment of
spatial scale.

3.4. Inappropriate use of surfaces in certain analyses

The problems of ozone mapping are magnified when
the resultant surfaces are used in further analyses, such
as estimating the impacts of ozone exposure. Examples
of such analyses are presented in Adams et al. (1985),
Abbey et al. (1991b), Westenbarger and Frisvold (1994),
Brown et al. (1995), Duddek et al. (1995), Fowler et al.
(1995), Korc (1996), Carroll et al. (1997), de Leeuw and
van Zantvoort (1997), Georgopoulos et al. (1997),
Hogsett et al. (1997), Lefohn et al. (1997), Christakos
and Vyas (1998b), Coyle et al. (2002), Diem and Comrie
(2002a), Laurence et al. (2001), Loibl and Smidt (1996),
Mulholland et al. (1998), Zidek et al. (1998), Kuik et al.
(2000), and Tolbert et al. (2000). Most of these studies
have not considered the inherent problems of ozone
mapping and the subsequent use of values from the
resultant ozone surfaces. The two factors noticeable in
those studies that can lead to slightly misleading and
possibly erroneous conclusions are as follows: (1) the
accuracy of ozone surfaces is low or unknown; and (2)
the disregard of the problems associated with areal
units. Those two factors are discussed below.

3.4.1. Accuracy of ozone surfaces is low or unknown
A major problem with most ozone exposure and

response studies is that they are used to determine the
risk to crops, forests, and people based on ozone sur-
faces with poor or unknown accuracies. Of the 22 stud-
ies noted above, only de Leeuw and van Zantvoort
(1997) and Diem and Comrie (2002a) reveal the
accuracies of their respective ozone surfaces. This is
troubling, because results from such studies may have a
major influence on air quality policy decisions. If the
accuracy of an ozone surface is not reported, one is
forced to treat any subsequent results with a consider-
able amount of doubt. In fact, the results from de
Leeuw and van Zantvoort (1997) may also be highly
questionable owing to the low accuracy (i.e. >20%
relative error) of the ozone surfaces, while the true
cross-validated accuracies of the ozone surfaces pre-
sented in Diem and Comrie (2002a) are unknown.

3.4.2. Disregard of the problems associated with areal
units
If ozone surfaces are employed in exposure–response

studies, the importance of the spatial resolution of the
surface increases. The operational scale should guide the
spatial resolution, for, ideally, the largest possible areal
unit of an ozone surface is equivalent to the operational
scale of ozone. Major problems can arise by not treating
the characteristics of areal units as important determi-
nants of the results from a study. This is part of the
Modifiable Areal Unit Problem (MAUP). When the
MAUP is present, conclusions spawned from the link-
age of ozone surfaces to other surfaces are questionable
based solely on the nature of areal units. The MAUP
consists of the scale effect and the zoning effect: the scale
effect refers to the inconsistency of analytical or statis-
tical results derived from data representing different
levels of spatial partitioning for the same area; and the
zoning effect refers to the variability of analytical or
statistical results derived from data for the same region,
but partitioned in different ways, with the number of
areal units in different partitioning schemes being the
same (Wong, 1996). Previous research (e.g. Openshaw
and Taylor, 1979; Fotheringham and Wong, 1991) on
the MAUP indicates that correlation coefficients
increase with increased aggregation; hence, the associ-
ation between ozone levels and hypothesized responses
in any domain should decrease in significance with a
decrease in size of the areal units. Conversely, the
validity of results decreases with a decrease in spatial
resolution of the surfaces involved. Therefore, one way
to minimize the MAUP is to use data from the indivi-
dual or the most disaggregated level (Wong, 1996).
The MAUP is inherently present during estimates of

forest-biomass loss (Hogsett et al., 1997), forest expo-
sure (Loibl and Smidt, 1996; Lefohn et al., 1997), tree
growth (Laurence et al., 2001), estimates of the areal
coverage of high ozone concentrations (Coyle et al.,
2002; De Leeuw and van Zantvoort, 1997; Fowler et al.,
1995; Mulholland et al., 1998), estimates of agricultural
yield (Adams et al., 1985; Westenbarger and Frisvold,
1994; Brown et al., 1995; Kuik et al., 2000), estimates of
population exposure (Abbey et al., 1991b; Carroll et al.,
1997; Georgopoulos et al., 1997; Korc, 1997; Mulhol-
land et al., 1998; Diem and Comrie, 2002a), and esti-
mates of associations between ozone levels and health
impacts (Duddek et al., 1995; Mulholland et al., 1998;
Zidek et al., 1998; Tolbert et al., 2000). In the earlier
studies, ozone surfaces are created with a specified spa-
tial resolution, which is not always reported. Conse-
quently, the researchers assume that there is no spatial
variation in ozone concentrations within the areal units.
This assumption can lead to erroneous results if the
areal unit is relatively large with respect to the opera-
tional scale of the variable. For example, if the spatial
resolution of an ozone surface is 50 km, then the results
of the analysis rest on the assumption that there is no
significant variation among ozone concentrations in
each 2500 km2 unit. Based on results presented in this
paper concerning the operational scale of ground-level
ozone, all studies that attempt to relate ozone
J.E. Diem /Environmental Pollution 125 (2003) 369–383 379



concentrations in a surface with a spatial resolution
greater than 10 km probably will yield problematic
conclusions. The operational scales of the associated
variables (e.g. human population) are equally impor-
tant. Results from the earlier studies would all change,
sometimes dramatically, with a change in the spatial
resolutions of the variables, especially ozone, as well as
changes in the spatial partitioning of a domain (e.g.
using census blocks instead of zip-code polygons).
The MAUP is an especially important factor to con-

sider when assessing the results of studies attempting to
establish causal relationships between ambient ozone
concentrations and health problems. With respect to
ozone surfaces, spurious correlations are likely to result
between ozone concentrations at the areal-unit level and
various human-health problems. In fact, personal ozone
exposure differs dramatically from ozone levels mea-
sured at stationary, outdoor monitors (Liu et al., 1997),
and this difference is postulated to be controlled by
micro-environmental factors, such as those present
within automobiles and buildings (Liu et al., 1995).
Even an extremely accurate high-resolution ozone sur-
face, which is not a common entity, may not adequately
reflect individual-level ozone exposure.
Examples of spurious correlations exist in Duddek et

al. (2000), Mulholland et al. (1998), and Tolbert et al.
(1999). Scale-related problems are never mentioned in
the three papers, yet, in all three studies, an attempt is
made to establish a causal link between ambient ozone
concentrations and respiratory ailments. The following
problems plague each study even before the actual
exposure–response analysis is conducted: (1) the ozone
surface has an unknown accuracy; and (2) the final
resolution of the ozone surface is much larger than the
suspected operational scale of ozone. The spatial reso-
lution of the eventual ozone surface in Duddek et al.
(1995) is approximately 225 km; the size of the areal
units may be over 1500 times larger than the appro-
priate size. Although the 10-km spatial resolution of the
eventual ozone surfaces used in Mulholland et al. (1998)
and Tolbert et al. (2000) is relatively fine, the surfaces’
overall accuracies are probably poor resulting from a
misuse of kriging (refer to Sections 3.1 and 3.3). For all
three studies, the researchers assume that all variables
(e.g. ozone, respiratory morbidity, adolescent popula-
tion, etc.) do not vary significantly within each areal
unit, even though in the case of ozone in Duddek et al.
(1995) this assumption does not hold. Duddek et al.
(1995) do not find a significant relationship between
respiratory morbidity and air pollution, but even if they
did the relationship could be challenged easily. The
other two studies consider their results more compel-
ling. Mulholland et al. (1998) determine that a positive
ozone-asthma association exists in the form of a 4%
increase in the emergency-room presentation rate per
20-ppb (parts per billion) increase in ambient ozone
concentrations, while Tolbert et al. (2000: 808) state
that their results ‘‘add to the body of evidence that
supports an association of air pollution with exacerba-
tion of asthma.’’ Results presented in these studies are
dubious; the results would be considerably more valid if
analyses would have been conducted with individual-
level data. The studies do provide baseline information
for future research exploring the MAUP in the context
of ozone exposure and health responses.
4. Recommendations

The development of a meaningful ozone surface is a
difficult task. It comprises multiple steps, each of which
requires knowledge of various assumptions and rules.
What follows are some recommendations to researchers
who are embarking on an ozone-mapping project. The
following recommendations reflect the findings pre-
sented in this paper:

	 Acknowledge spatial scale (i.e. geographic scale,
sampling interval, and operational scale).

	 Understand the requirements and limitations of
the various surface-generating techniques.

	 Select a surface-generating technique suitable for
the task at hand.
� Only use kriging if a robust semivariogram

can be developed.
� If the scarcity of ozone monitors prohibits the

use of a technique, investigate multivariate
statistical techniques that incorporate ancil-
lary data.

	 Provide the spatial resolution of the ozone sur-
face.

	 Present the overall accuracy of the ozone surface.
� The following evaluation statistics should be

provided: P
-
, O
-
, sp, so, a, b, RMSE, RMSE/O

-
,

RMSEs, RMSEu, and d.
	 Include a scale bar on the map so viewers can

relate map distance to actual distance (i.e. car-
tographic scale).

	 Address and, if possible, minimize the MAUP
when relating the ozone surface to other vari-
ables.

	 In exposure–response studies, use data specific to
individuals.

	 If no appropriate surface-generating techniques
are available, then forego the development of a
surface and use a more suitable form of carto-
graphic display, such as a proportional-symbol
map (Fig. 4).

To repeat partially what is provided earlier, the
strongest recommendation that can be made to
researchers is to understand the prerequisites of a sur-
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face-generating technique before employing it to pro-
duce an ozone surface.
5. Conclusions

This paper has examined the ozone-mapping litera-
ture from a spatial-scale perspective, and several prob-
lem areas have been revealed. It should be emphasized
that despite the critical nature of this paper all attempts
at creating ozone surfaces represent positive advances in
the understanding of spatial variations in ground-level
ozone concentrations. Information found in the ozone-
mapping literature is needed for understanding the role
of spatial scale in the appropriateness of surface-gen-
erating techniques.
Of the several types of spatial scale pertinent to ozone

mapping, this paper has focused on the operational
scale of ozone. Operational scale and spatial complexity
are inversely related. Empirical results presented in this
paper and results from other studies reveal that the
operational scale of ground-level ozone in metropolitan
areas is most likely less than 10 km and possibly as
small as 5 km. The analysis presented in this paper
involved examining the spatial dependence of ozone
concentrations as predicted by a regression-based mod-
eling approach. The assumed operational scale of
ground-level ozone implies that the ozone landscape has
substantial relief and thus is far more complex than is
reflected in the work of most ozone researchers.
Almost every ozone-mapping study is plagued with

one or more major problems, which include spatial-
scale violations, an improper evaluation of surfaces,
inaccurate surfaces, and the inappropriate use of sur-
faces in certain analyses. Spatial-scale violations are
ubiquitous and consist of the following: (1) disregard
the linkages among geographic scale, sample size, and
spatial resolution; (2) disregard spatial-autocorrelation
issues; (3) improper integration of data with multiple
spatial resolutions; and (4) treating surfaces as ‘‘reality.’’
Few studies report any accuracy-assessment statistics,
and even fewer accurate ozone surfaces are produced.
Nearly all the surfaces are inappropriate for further
analyses (e.g. estimates of population exposure) owing
to the accuracies of surfaces being low or unknown, the
assumption of ozone homogeneity within areal units,
and the MAUP.
Researchers involved in ozone-mapping projects

should be fully aware of the influence of spatial scale
(geographic, measurement, and operational) on the
mapping methodology and results. Surface-generating
techniques should be selected carefully, and the chosen
technique should not be in conflict with any aspect of
spatial scale. Ozone surfaces should be created only if it
is technically sound to do so, and once it is created the
accuracy of the surface should be evaluated using a
standard suite of evaluation metrics. An enhanced
awareness of the nature of ozone surfaces is needed if
the predicted ozone concentrations are to be related to
other variables. Therefore, researchers should be aware
of the MAUP so that potentially spurious results are
not considered legitimate.
Ozone mapping is important, for ozone maps can

influence decisions concerning air-quality policy, which,
in turn, affect the attitudes and behaviors of the general
public. Unfortunately, maps in the form of surfaces
have an immense amount of power, and one can be
easily tempted to treat the surface as a perfect repre-
sentation of reality. An example of the potential power
of ozone surfaces involves the US Environmental Pro-
tection Agency’s Ozone Mapping Project. This project,
which is part of the agency’s EMPACT (Environmental
Monitoring for Public Access and Community Track-
ing) program, provides the general public with real-time
ozone maps for various domains via the Internet. The
goal of the project is to create maps ‘‘that provide
communities with real-time information about ozone
pollution in an easy-to-understand pictorial format (US
EPA, 1999: 2).’’ This kind of project is important for
public awareness of ozone; however, the methods used
to produce those maps require the scrutiny outlined in
this paper.
Kriging and IDW are the two most common spatial-

interpolation techniques employed in the project, and
the paucity of ozone measurements, especially when
considered at a small geographic scale, such as a
metropolitan area, precludes the employment of these
techniques. The accuracy of the surfaces is not pre-
sented; therefore, users are led to believe that the maps
Fig. 4. Proportional-symbol map of average hourly concentrations in

the Atlanta metropolitan area in 2000.
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are an adequate representation of the ‘‘true’’ ozone sur-
face and that the uncertainties in ozone estimates do not
vary across a domain. In some metropolitan areas,
ozone maps are shown in newspapers and on television.
As a result, the maps are seen by hundreds of thousands
to millions of people. An alternative is to provide a
proportional-symbol map of ozone concentrations
(refer to Fig. 4). Because this map only provides moni-
tor-specific ozone concentrations and is thus not an
ozone surface, it does not provide false information
concerning ozone concentrations at monitor-less loca-
tions. For instance, viewers of the map will not be led to
believe that a specific ozone concentration exists at their
place of residence.
Finally, this paper has addressed the need for a rig-

orous assessment of the operational scale of ground-
level ozone. Knowledge of operational scale can
enhance greatly the practice of ozone mapping. Optimal
ozone-monitoring networks can be developed with the
operational scale as a reference sampling interval.
Operational scale also represents the largest allowable
areal unit of an ozone surface. The acquisition of
operational-scale information for ozone is a future
research endeavor that would yield unprecedented ben-
efits for the ozone-research community.
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