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‘‘Capsule’’: Multiple linear regression can be used to map air pollution levels in metropolitan areas given the availability
of multi-temporal air pollution measurements as well as spatially and temporally resolved inventories of atmospheric

pollutant emissions.

Abstract

A limited number of sample points greatly reduces the availability of appropriate spatial interpolation methods. This is a com-
mon problem when one attempts to accurately predict air pollution levels across a metropolitan area. Using ground-level ozone

concentrations in the Tucson, Arizona, region as an example, this paper discusses the above problem and its solution, which
involves the use of linear regression. A large range of temporal variability is used to compensate for sparse spatial observations (i.e.
few ozone monitors). Gridded estimates of emissions of ozone precursor chemicals, which are developed, stored, and manipulated

within a geographic information system, are the core predictor variables in multiple linear regression models. Cross-validation of
the pooled models reveals an overall R2 of 0.90 and approximately 7% error. Composite ozone maps predict that the highest ozone
concentrations occur in a monitor-less area on the eastern edge of Tucson. The maps also reveal the need for ozone monitors in

industrialized areas and in rural, forested areas. # 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Spatial interpolation is common practice in a variety
of studies, especially those involving environmental
variables. Essentially, the goal of interpolation is to dis-
cern the spatial patterns of a phenomenon by estimating/
predicting values at unsampled locations based on
measurements at sample points. When concerning air
pollution, the result is a surface (map) of air pollution
concentrations. These maps are typically produced to
visualize the spatial distribution of air pollution levels
and to estimate human and vegetation exposure to pol-
lution. However, a problem arises when one attempts to
use a spatial interpolation method to produce an accu-
rate, high-resolution surface based on a small number of
spatial observations (i.e. small sample size). This prob-
lem leads to the following questions:

1. Is a suitable mapping method available?
2. Can accurate surfaces be created with the above

method?

One possible solution to these questions is represented
by predictive mapping rather than spatial interpolation.
This solution involves the integration of geospatial
databases, multi-temporal data, and multi-variate sta-
tistical techniques.

1.1. Aims and questions

This paper’s main objective is to outline an approach
that others can use to map air pollution concentrations
for areas with a limited number of spatial observations,
but which have an abundance of temporal observations
and sufficient ancillary geospatial data. We present an
example of a linear regression-based mapping method
that uses extensive, multi-temporal, ground-level
ozone data at limited spatial locations and extensive,
spatially and temporally resolved atmospheric pollutant
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emissions data to predict the spatial patterns of ozone
in the Tucson, Arizona region. The period of April–
September of 1995–1998 is selected because it is a recent
time period and those particular months represent the
ozone season (Diem and Comrie, 2001a).
This study is driven by several key research questions,

which are as follows:

1. Can linear regression-based mapping be used suc-
cessfully in a metropolitan area?

2. What are appropriate spatial predictors for ozone?
3. What are the most important spatial processes

affecting ozone?
4. What are the spatial patterns of ozone concentra-

tions?
5. What are the policy implications of the resulting

maps?

Even though these questions are answered based on
results from a single case study, the answers should be
moderately applicable to other study regions and should
thus help guide future air quality mapping in those
regions.

1.2. Sample points and spatial interpolation methods

Many metropolitan areas in the Unites States have
relatively low sampling densities of air quality monitors
(e.g. a monitor located every 10–20 km) due to the high
costs of monitor acquisition and operation. Therefore,
even large metropolitan areas with millions of inhabi-
tants have less than 20 monitors for a given pollutant.
Monitors are typically placed at perceived pollut-
ant ‘‘hot spots’’ or they are placed in rural areas to
obtain estimates of assumed background pollutant con-
centrations (i.e. outside the urban plume).
Many air pollution studies have employed spatial

interpolation methods to produce maps of air pollution
concentrations. These studies have mostly employed
distance-weighting methods (Greenland and Yorty,
1985; De Leeuw and Van Zantvoort, 1997; Phillips et
al., 1997) and kriging (Lefohn et al., 1987, 1988; Casado
et al., 1994; Loibl et al., 1994; Westenbarger and Fris-
vold, 1994; Liu and Rossini, 1996; Godzik, 1997; Phillips
et al., 1997; Mulholland et al., 1998; Holland et al., 2000;
Tayanc, 2000). Kriging is more complex and has been
used more widely than distance-weighting methods, and
some comparison studies (Leenaers et al., 1990; Phillips
et al., 1997) have found kriging to outperform distance-
weighting methods. For a comprehensive review of most
available spatial interpolation methods refer to Lam
(1983). To predict values at unsampled locations, dis-
tance-weighting typically assigns more weight to nearby
points than to distant points (Myers, 1991), thus inverse
distance-weighting (IDW) is a popular form. Kriging
is a regression-based technique that estimates values
at unsampled locations using weights reflecting the

correlation between data at two sample locations or
between a sample location and the location to be esti-
mated (Myers, 1991). Kriging has the advantage of pro-
viding unbiased estimates of values at unsampled
locations with minimum estimated variance (Leenaers et
al., 1990). Both distance-weighting and kriging directly
use coordinate information of sample points to perform
interpolation, and kriging’s performance especially is
dependent on the presence of spatial autocorrelation (i.e.
values at nearby points are more similar than are values
at distant points). The degree of spatial autocorrelation
(spatial dependency) latent in a geo-referenced data set
to some degree determines how successful spatial inter-
polation will be (Griffith and Lane, 1999).
Distance-weighting and kriging typically are not sui-

table for mapping air pollution in most metropolitan
areas. The major obstacles to using these interpolation
methods are the relative paucity of air quality monitors
(i.e. small sample size) and the likely poor spatial dis-
tribution of those monitors (i.e. inappropriate sampling
scheme). Distance-weighting requires a dense network
of uniformly spaced, spatially-autocorrelated observa-
tions (Myers, 1994); however, this type of network is
usually not available for the measurement of air pollu-
tion and many other environmental phenomena. Clus-
tering of the sample points is troublesome, since an
equal weight is assigned to each of the points even if it is
in a cluster (Lam, 1983). Kriging explicitly requires
spatial autocorrelation (Myers, 1991) as well as an
abundance of sample points to be an accurate spatial
interpolation method (Myers, 1991; Daly et al., 1994;
Lesch et al., 1995; Liu and Rossini, 1996). If the degree
of spatial autocorrelation is minimal the resulting sur-
face is just ‘‘gibberish’’ (Berry, 1996). Cressie (1991)
recommends a minimum of 30 pairs per distance class
(i.e. points within a specified distance of each other)
while the central limit theorem suggests as many as 100
pairs per class (Griffith and Lane, 1999). The accuracy is
also questionable if the sample data do not represent the
actual spatial variability of the predicted variable (Daly
et al., 1994). As mentioned previously, most air pollu-
tion monitoring networks typically do not resolve the
actual spatial variability of air pollution levels due to
monitor placement bias. Therefore, when used on small
geographic scales (e.g. metropolitan areas) that have an
insufficient number of monitors, kriging is problematic.
In addition to the above problems, if there are a small
number of spatial observations, kriging can over-
simplify (smooth) the spatial pattern of pollution levels
by not capturing the operational scale (i.e. spatial com-
plexity or scale of effect) of the pollutant.

1.3. Predictive mapping with linear regression

From both a theoretical and applied perspective, lin-
ear regression appears to be an appealing technique for
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mapping air pollution in most metropolitan areas.
Unlike distance-weighting and kriging, linear regression
models do not require spatially autocorrelated observa-
tions to produce an accurate surface. For spatially
autocorrelated data, measured observations behave as
partially repeated measures of a single observation
rather than as single observations (Griffith, 1992). When
employing linear regression, one assumes all observa-
tions to be independent. A linear regression analysis
produces an equation derived from statistical relation-
ships between a dependent variable and one or more
independent variables (i.e. predictor variables). The
equation yields predicted values of the dependent vari-
able. The general equation is as follows:

Ŷ ¼ aþ b1X1 þ . . . bnXn;

where, in the case of air pollution, Ŷ is the predicted air
pollution concentration, a is a constant, and b1 to bn are
the coefficients for the associated predictor variables X1

to Xn. Linear regression assumes a significant relation-
ship between air pollution concentrations and other
variables (e.g. estimated emissions of pollutants) at the
monitors; consequently, the values of the predictor
variables are used to predict air pollution concentra-
tions at all locations, not just at the monitors. Predictive
mapping with linear regression depends on the avail-
ability of spatially continuous predictor variables (i.e.
variables with values at every spatial location), which
can be stored as geospatial databases within a GIS. Only
a few air pollution studies have employed linear regres-
sion as a mapping method (Briggs et al., 1997, 2000). The
heavy dependence on geospatial databases might be a
major reason for linear regression’s limited use.
Even though within a metropolitan area there are

usually a small number of air quality monitors, linear
regression can still be used to predictively map air pol-
lution concentrations. This is enabled by multi-temporal
measurements of air pollution concentrations at each
monitor and a temporally dynamic pollutant emissions
landscape (surface). The monitors are exposed to dif-
ferent emissions over space and time and the measured
air pollution concentrations are a consequence of
this truly dynamic emissions landscape. Thus, the
changing emissions landscape enables an abundance
of temporal observations to compensate for a lack of
spatial observations.
The usefulness of the linear regression model, which is

essentially its ability to produce a reliable surface of air
pollution concentrations, depends on the placement of
monitors in a wide range of emissions environments and
the availability of a reasonably accurate spatially
and temporally resolved emissions inventory. In addi-
tion, a GIS or similar software is needed to calculate
emissions estimates within different neighborhoods of a
specific location to account for the range of spatial

processes responsible for the pollutant’s spatial pattern,
as a pollutant’s concentration is a function of both local
and distant spatial processes (e.g. emissions).
A linear regression model can be developed for both

predictive and explanatory purposes. However, a linear
regression equation that yields the ‘‘best’’ predictions
may not provide the ‘‘best’’ explanations, especially if
more than one of linear regression’s principal assump-
tions is violated (Mark and Peucker, 1978; Griffith and
Lane, 1999). See Anselin (1988) and Crown (1998) for a
detailed treatment of the assumptions of linear regres-
sion, since a discussion of the assumptions is beyond the
scope of this paper. Fortunately, when only prediction
is the objective of the analysis, which is the case in this
paper, linear regression is a robust procedure that is
influenced marginally by departures from assumptions
(Mark, 1984).
In the context of air pollution mapping, linear regres-

sion has several substantial benefits. Overall, a theory-
based spatial model can be created that accounts for
spatial processes and thus predicts spatial patterns. To
capture the spatial processes, linear regression analysis
utilizes GIS capabilities and extracts the maximum
amount of information from the different data sets
(Briggs et al., 1997). On a more technical level, linear
regression can also produce reliable estimates beyond
the sample area (i.e. the polygon anchored by the sam-
ple points) as well as beyond the range of the measured
values if the relationships between the predictor vari-
ables and the predictand (i.e. dependent variable)
remain constant. Spatial interpolation methods tend to
produce inaccurate spatial predictions outside the sam-
ple area, but the spatial extrapolation capability of a
linear regression model may be better if the values of the
predictor variables have a large range and are dis-
tributed well. Linear regression can produce predictions
that are both higher and lower than sample point
values, thus global minimum and maximum levels can
be identified more accurately.
Linear regression’s major disadvantages in the current

context are its dependence on a large amount of geo-
spatial data, its assumption that the predictor variables
(i.e. independent variables) are free of measurement
error, and its potentially limited versatility. To optimize
the model’s specification, many spatially continuous
predictor variables might be needed initially to ensure
that important predictor variables are not excluded. For
gridded data that have been subjected to aggregation
and resampling, the violation of the ‘‘x is free of error’’
assumption is inevitable. Most spatial data stored in a
GIS contain errors from a wide variety of sources, and
these errors may have a significant impact on the valid-
ity of applying linear regression equations in a GIS
environment (refer to Elston et al., 1997). Finally, since
linear regression models are empirical, their versatility
is dependent on the input data. Hence, there is no
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guarantee as to the reliability of the model once it is
extrapolated beyond the range of the input data used to
construct it (Chock et al., 1975). Therefore, if the sam-
ple points do not cover a representative range of values
of the available predictor variables, many locations will
have unreliable predictions.

2. Case study: ozone in the Tucson region

2.1. Overview of ground-level ozone

Ground-level ozone is an environmental concern
because of its adverse impacts on human health, crops,
and forest ecosystems (Sillman, 1999). Ozone can be
formed by the oxidation of the volatile organic com-
pounds (VOCs) in the presence of nitrogen oxides
(NOx) and sunlight (Chameides et al., 1992). The accu-
mulation of ozone is critically dependent upon the
physical parameters that characterize the planetary
boundary layer, such as temperature, wind speed, wind
direction, and mixing height (Cardelino and Chameides,
1995). Generally, hot, sunny, and calm conditions are
conducive to elevated ambient ozone concentrations.
Consequently, concentrations tend to peak during the
early afternoon. The above conditions not only increase
the photochemical production of ozone but can also
increase the atmospheric emissions and concentrations
of ozone precursor chemicals (i.e. VOCs and NOx),
which then usually lead to higher ozone concentrations.

2.2. Ozone monitoring in the Tucson region

The Tucson region (centered at �32� N latitude and
�111� W longitude) is located in southern Arizona,
USA and contains urban areas as well as surrounding
desert, agricultural, mining, and mountainous areas.
Elevation ranges from �600 to over 2800 m above sea
level (a.s.l.), with peaks in the Santa Catalina, Rincon,
and Santa Rita Mountains to the north, east, and south
of the city, respectively (Fig. 1).
Tucson’s ozone monitoring network is typical of

those in many urbanized areas. For example, the sam-
pling density, which is approximately one monitor per
240 km2, is equivalent to that of Atlanta, Georgia, a
heavily studied area with respect to ozone pollution.
The monitors exist in a range of environments and are
scattered across the Tucson metropolitan area. Since the
monitors are expensive, they have been placed in loca-
tions where measurement redundancy over space is
minimized. Therefore, linear regression-hindering spa-
tial autocorrelation should not exist. Unfortunately,
monitors do not exist in rural areas, such as desert and
forest areas, or in industrial areas, which limits linear
regression’s spatial extrapolation capabilities. Between
1995 and 1998, the ozone monitoring network included

an upwind, semi-rural monitor [Tangerine (TANG)],
two upwind, suburban monitors [Pomona (POM) and
River (RIV)], a downtown monitor (DT), a downwind,
suburban monitor [22nd and Craycroft (22&C)], two
downwind, urban-fringe monitors [Hidden Valley (HV)
and Saguaro National Park East (SNP)], and a down-
wind, semi-rural monitor [Fairgrounds (FG)]. POM and
RIV were not in operation simultaneously.
The highest ozone concentrations occur between

April and September with a persistent mountain-valley
circulation responsible for transporting pollutants east-
ward throughout the afternoon, thereby causing SNP
typically to have the highest ozone concentrations of all
the monitors. The lowest concentrations occur at DT
due to the removal of ozone by freshly emitted NO (i.e.
NO-scavenging; Diem and Comrie, 2001a). The US
National Ambient Air Quality Standard (NAAQS) for
ozone has never been violated in Tucson; however,
some monitor-less areas may have ozone concentrations
that exceed the NAAQS.

3. Data

The modeling and associated methods required six
types of data: ozone concentrations, VOC and NOx

emissions estimates, meteorological values, land use
information, population information, and a digital
elevation model (DEM). Hourly ozone concentra-
tions from April to September of 1995–1998 were
obtained from the United States Environmental Pro-
tection Agency’s (EPA) Aerometric Information
Retrieval System (AIRS). Data for the complete time
period were available for 22&C, DT, FG, SNP, and
TANG. Ozone data for HV, POM, and RIV existed
from April 1995 to August 1996, from August 1997 to
September 1998, and from April 1995 to June 1996,
respectively. Gridded (500 m), multi-temporal estimates
of atmospheric VOC and NOx emissions were devel-
oped separately and are described in Diem and Comrie
(2000, 2001b). These inventories contain estimates of
average daily emissions for each month and type of
day (i.e. weekday and weekend) within each month.
Daily maximum temperature, daily minimum relative
humidity, and average daily atmospheric pressure data
collected by the National Weather Service (NWS) at
Tucson International Airport (TIA) from 1995 to 1998
were acquired from the National Climatic Data Center
(NCDC). Hourly wind speed, wind direction, and
insolation data measured at The University of Arizo-
na’s Campus Agricultural Center from 1995 to 1998
were acquired from the Arizona Meteorological Net-
work (AZMET). Hourly wind speed and wind direc-
tion data collected at several air quality monitoring
sites scattered throughout the metropolitan area from
1995 to 1998 were obtained from AIRS. Spatially
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Fig. 1. Map of the Tucson region showing the City of Tucson, the urban/source-intensive area, the metropolitan area, topography, agricultural

areas, mining areas, and the eight ozone monitoring sites. The numbers correspond to the elevations (m a.s.l.) of the contour lines and mountain

peaks.
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resolved 1995 land use data for the region were pro-
vided by The University of Arizona’s School of
Renewable Natural Resources. A spatially resolved
1997 database of the region’s street network was pro-
vided by the Pima County Department of Transporta-
tion. Spatially resolved 1998 population estimates for
the region were provided by the Pima Association of
Governments. Finally, a high-resolution (30 m) DEM
was acquired from the Arizona Regional Image
Archive (ARIA).

4. Methods

The methods presented in this paper included (1)
variable creation, (2) temporal clustering, (3) variable
screening, (4) multiple linear regression modeling, (5)
model evaluation, and (6) the creation of ozone design
value maps (Fig. 2). The methods consisted primarily of
data reduction techniques (i.e. cluster analysis and
PCA) so that parsimonious regression models could
eventually be developed. The models were based on the
theory that ozone concentrations are a function of local
emissions of VOCs and NOx as well as transported
VOCs, NOx, and ozone from upwind areas.

4.1. Model development

4.1.1. Variable creation
Gridded emissions inventories (500 m resolution)

were manipulated within a GIS to produce potential
predictor variables of the same spatial resolution. Based
on the success of Briggs et al. (1997) with using neigh-
borhood totals of emission proxy values (i.e. traffic
volume and land cover) as predictor variables in a
regression-based nitrogen dioxide model, similar vari-
ables were created for this study. The spatial variables
used in this study consisted of actual emissions vari-
ables, variables that were a proxy for ozone transport,
and an exposure variable. The variables represented
various physical and chemical processes affecting daily
maximum ozone concentrations, which typically occur-
red during the early afternoon (i.e. 13:00–14:00).
Since motor vehicles are the most important VOC and

NOx source in the Tucson region (Diem and Comrie,
2001b), predictor variables included motor vehicle VOC
and NOx (MVOC and MNOx) emissions estimates that
were specific to mid-mornings and entire days. Hourly
motor vehicle emissions between 08:00 and 10:00 were
estimated to account for weekday vs. weekend differ-
ences in NO-scavenging during the morning rush-hour
period (i.e. weekdays have more traffic and more
scavenging). These values were calculated by applying
estimated hourly coefficients to the daily emissions esti-
mates. Daily emissions were assigned to the 11:00 to
13:00 interval (i.e. mid-day) since weekday vs. weekend

differences in daily emissions were similar to differences
in mid-day emissions.
Emissions from other anthropogenic and biogenic

sources were only determined on a daily basis; there-
fore, daily emission totals were assigned to the mid-day
period while emissions specific to the morning period
were not estimated. The diversity of anthropogenic
sources made it difficult to generalize their diurnal
emissions profiles and thus estimate generalized morn-
ing and mid-day emissions factors. It was reasonable to
associate daily biogenic VOC (BVOC) emissions totals
with the mid-day period since it is likely that, similar to
Atlanta, over 75% of daily BVOC emissions occur
between 10:00 and 18:00 (Geron et al., 1995).
Neighborhood emissions estimates were calculated at

each grid cell for many temporal situations (e.g. week-
day morning in May). Local and upwind MVOC and
MNOx, other anthropogenic VOC and NOx (OVOC
and ONOx), and BVOC emissions at each ozone moni-
tor were included in the model development process
(Table 1). At each cell, cumulative emissions were cal-
culated for short radial distances (2 and 5 km) and
longer wedge-like distances (10 and 20 km). Six, 60�

wedges (centered at 45, 105, 165, 225, 285, and 345�,
respectively) extended towards the direction from which
the wind was coming during a certain time period (e.g.
11:00 to 13:00).
To account for the transport of ozone, cumulative

totals of built-up land (BU; i.e. commercial land,
industrial land, malls, mines, schools, major roadways,
railway yards, and airports) and road length (RL) were
calculated for long wedge-like distances (20, 30, and 40
km). Theoretically, as cumulative totals of built-up land
and road length upwind of a cell increase so should the
amount of ozone transported to that cell. This is evident
in Tucson, for SNP is downwind of the urban area and
has the highest ozone concentrations resulting from
pollutant transport (Diem and Comrie, 2001a). These
proxy variables were intended to explain variance in the
ozone data that was not accounted for by the emissions
variables.
A final variable was included to make a distinction

between cells that were exposed fully to the major air
pollution plumes and those that were relatively isolated
from the plumes. This variable, EXP, was developed
within a GIS by conducting a visibility analysis on a
high-resolution DEM. Approximately 40 observation
points within the metropolitan area were used in the
visibility analysis to determine which cells were exposed
directly to pollution within the metropolitan Tucson
area.
The emissions variables were multiplied by the

meteorological variables to increase the temporal vari-
ation among the emissions variables and to possibly
make the emissions more representative of actual emis-
sions on any given day. The meteorological variables
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were as follows: maximum daily temperature (MAXT),
minimum relative humidity (MINRH), inverse of aver-
age daily wind speed (IWSD), inverse of 08:00–10:00
wind speed (IWS8to10), inverse of 11:00–13:00 wind
speed (IWS11to1), average daily atmospheric pressure
(PRESS), and total daily insolation (INSOL). Meteor-
ology influences pollutant emissions, and the impacts of
meteorology vary depending on the emissions source.
For example, ONOx emissions, which are dominated in
the summer months by emissions from a local electric
power generating facility, should increase with increases
in temperature and relative humidity; hot and humid

conditions lead to increased air conditioner use and thus
increased NOx emissions from the power plant.

4.1.2. Temporal clustering
Many different emissions/meteorological situations

existed among the days considered in this study. For
instance, local ONOx emissions might have been the
most important predictors on some days, while on other
days long-distance MVOC emissions might have domi-
nated. Therefore, a single model for all of the days
probably would have had difficulty identifying impor-
tant predictive relationships among the variables. By

Fig. 2. Flow chart of the methods used to develop the ozone maps.
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clustering the days, the unique cluster-specific depend-
ence of ozone on emissions/meteorological interactions
could be captured. Clustering leads to a better specifi-
cation of significant predictor variables in the regression
models, thereby resulting in smaller errors and larger
coefficients of determination (R2) than one would
achieve with a non-clustering approach (Davis et al.,
1998).
Days were placed into clusters based on monitor-

specific deviations from the average daily maximum
ozone concentration so that the clusters represented sev-
eral dominant ozone patterns. The average daily maxi-
mum concentration was the average of the daily
maximum values at the five core monitors (TANG, DT,
22&C, SNP, and FG). Days with missing values at one
or more of the monitors were excluded from the analy-
sis. Consequently, approximately 10% of the original
732 days were not clustered.
The remaining days were clustered with K-means

clustering. K-means clustering is a non-hierarchical
iterative clustering method that requires the number of
clusters and cluster ‘‘seeds’’ to be specified initially. It
allows for the reclassification of days after they have
been placed into an initial cluster (Davis et al., 1998). In
this study, iterations ended when the locations of cluster
centers remained stable in five-dimensional (i.e. five
monitors) ozone deviation space.
Solutions were found for a range of cluster numbers.

The optimal number of clusters was based on the fol-
lowing criteria: (1) each cluster had to have at least 40
days (�240 observations) to ensure a robust sample (at
least 80 observations) for independent analysis; and (2)
there should have been a relatively small change in an
R2 value, which was derived from mean monitor-specific
ozonedeviationsper cluster regressedagainst actual ozone
deviations, when moving from the chosen number of
clusters to a larger number of clusters.
Moran’s I tests were used to test for spatial auto-

correlation among ozone concentrations (measured at

six to seven monitors) for each cluster. Significant spa-
tial autocorrelation was deemed present when the Z-
value at either a 10, 15, 20, or 25 km lag was significant
at the �=0.05 level. However, the distribution of the
Moran’s I test statistic is asymptotically normal, thus
the distribution may not be normal for small samples
(i.e. less than 50) and the use of the normal distribution
could lead to mistaken inferences (Odland, 1988).
Therefore, examinations of plots of distance between
monitors vs. absolute difference in ozone concentrations
between monitors were also used to detect spatial auto-
correlation among ozone concentrations. These exam-
inations involved 26 cases for each cluster. A significant
(�=0.05) correlation between distance and difference
was considered an indicator of spatial autocorrelation.

4.1.3. Variable screening
Over 200 potential predictor variables were created,

so principal components analysis (PCA) was used to
reduce the list of variables to a much smaller number of
reasonably uncorrelated variables that represented the
various emissions categories. A standardized PCA with
rotation (Varimax) of all appropriate variables was
performed for each cluster. Only the most important
components (i.e. eigenvalue greater than one) were
extracted. From each of the important components, a
single variable was selected that had both a relatively
high loading and a relatively high correlation with the
dependent variable (i.e. ozone deviation). The selected
variables therefore did not exhibit strong multi-
collinearity and were used as predictor variables in
multiple linear regression analyses.

4.1.4. Multiple linear regression modeling
Multiple linear regression models were developed for

each cluster using a random selection of two-thirds of
the available days. The remaining one-third of the days
were used as independent data during model evalu-
ations. The dependent variable in the multiple linear

Table 1

Attributes of basic spatial variables

Spatial

variable

Description Wind direction

times

Single

cell

Radius of circle

(km)

Radius of wedge

(km)a
Wedge differences

(km)a

2 5 10 20 30 40 (40�30) (40�20) (30�20)

MVOC Motor vehicle VOCs 08:00–10:00; 11:00–13:00 X X X X

MNOX Motor vehicle NOX 08:00–10:00; 11:00–13:00 X X X X

OVOC Other anthropogenic VOCs 11:00–13:00 X X X X

ONOX Other anthropogenic NOX 11:00–13:00 X X X X

BVOC Biogenic VOCs 11:00–13:00 X X X X

BU Built-up land 11:00–13:00 X X X X X X

RL Road length 11:00–13:00 X X X X X X

EXP Exposed NAb X

a Wedges are 60� and extend towards the direction from which the wind is coming during the various wind direction times.
b NA, not applicable.
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regression models was the deviation from the area-wide
mean ozone concentration. The predicted residual sur-
face was then added to the mean ozone concentration to
yield predicted daily maximum ozone concentrations.
Each model was initially developed under the assump-
tion that every variable (from the standardized PCA)
belonged in the final model. Backward variable elim-
ination removed the variables from the model one at a
time based on removal criteria. In this study, a variable
was removed if its F-value is greater than 0.05. This
criterion prevented the inclusion of confounding vari-
ables in the models.

4.2. Model evaluation

Even though the multiple linear regression models
were developed almost entirely for predictive purposes,
linear regression assumptions were still obeyed to a
considerable degree. Even so, since this paper does not
deal explicitly with the inferential aspects of multiple
linear regression, diagnostic tests were not used to
determine whether or not assumptions had been vio-
lated. Model evaluation consisted primarily of analyses
of residuals to assess model bias and misspecification.
Inaccurate predictions should have been the result of

(1) biased model coefficients, (2) errors associated with
the spatial variation in the independent variables, and
(3) model misspecification (Miron, 1984; Heuvelink et
al., 1989). The first two causes of error were difficult to
remove, for they stemmed from errors in the gridded
emissions inventories, which had been made as error-
free as possible (Diem and Comrie, 2000, 2001b). How-
ever, model misspecification, such as the exclusion of
important spatial and temporal predictor variables,
could be detected and fixed. Thus, model-misspecification
tests were conducted that consisted of Moran’s I tests of
errors and cluster-specific examinations of plots of dis-
tance between monitors vs. absolute difference in resi-
duals (i.e. predicted minus observed values) between
monitors. For the Moran’s I tests, significant spatial
autocorrelation was deemed present when the Z-value
at either a 15, 20, or 25 km lag was significant at the
�=0.05 level, while a significant (�=0.05) correlation
between distance and residual difference also signified
spatial autocorrelation. In addition, year-, month-, and
day-specific (i.e. weekday and weekend) errors were
examined to determine if large errors tended to occur
during a certain year, month, or day. The presence of
spatial autocorrelation and temporally varying errors
denoted the exclusion of important spatial variables and
temporal variables, respectively.
Model accuracy was evaluated with temporally inde-

pendent data for a pooled model (pooling of predictions
from the models) and predictions on high ozone days
(HODs). HODs were defined as days that had region-
wide daily maximum ozone concentrations (i.e. average

of daily maximum ozone concentrations at 22&C, DT,
FG, SNP, and TANG) that were in the top 10% of all
summer (April–September) values from 1995 to 1998.
Knowing the accuracy of extreme values was important
when evaluating the validity of ozone design value
maps, which are composites of extreme ozone values.
Fully independent data, which were both spatially and
temporally independent, could not be used for the
evaluation. The monitors represented unique locations
on the ozone precursor emission landscape; therefore,
each monitor had critically important values for many
of the predictor variables. Consequently, evaluating the
models with ‘‘jack-knifed’’ data (i.e. withholding one of
the monitor’s data from the modeling process) would
have resulted in unreliable ozone predictions at most of
the monitors.
Multiple evaluation statistics were used to determine

modeling accuracy. The coefficient of determination
(R2), root mean squared error (RMSE), mean biased
error (MBE), percent error, index of agreement (D1),
and the proportion of systematic error (PSE) were cal-
culated. D1 is a dimensionless measure of the degree to
which model predictions are error-free (Willmott, 1981).
It ranges from 0.0 (complete disagreement between pre-
dicted and observed values) to 1.0 (perfect agreement
between predicted and observed values). The proportion
of systematic error (PSE) was calculated by dividing
the mean-squared error that was systematic by the total
mean-squared error (MSEs/MSE). Low PSE values are
optimal, for systematic error is model-derived while
unsystematic error represents the natural variability of
the data that cannot be reduced by a model (Wilmott,
1981; Comrie, 1997; Comrie and Diem, 1999).

4.3. Creation of predicted design value maps

An air planning area is in violation of the NAAQS for
ozone if, at a particular monitor, the fourth highest daily
maximum 1-h average ozone concentration over the past
3 years exceeds 125 ppb (parts per billion). The linear
regression models were employed to produce many
ozone maps that were then stacked and the fourth high-
est value at each cell was extracted. Maps of the fourth
highest values (i.e. design value maps) were created and
subsequently examined to determine possible ozone
standard exceedance areas and to estimate the percent-
age of the region’s population that might have been
exposed to air pollution that exceeded the NAAQS.

5. Results and discussion

5.1. Clustering of days

The cluster analysis results in five clusters based on
spatial ozone patterns among the monitors. The clusters
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differ with respect to month of occurrence, atmospheric
conditions, day of occurrence, and magnitude and spa-
tial variation of ozone levels (Table 2).
Clusters 1 and 2 occur most frequently in August,

cluster 3 occurs mostly in July and August, cluster 4
occurs most frequently in April, and cluster 5 occurs
mostly in May and June. Clusters 1, 2, and 3 have
higher temperatures and more westerly mid-day winds
than do clusters 4 and 5. Clusters 4 and 5 are associated
with windy mornings (or days) as well as calm, and,
most importantly, relatively cool conditions at mid-day.
Clusters 1 and 4 occur most frequently on weekends,
cluster 5 occurs mostly on weekdays, and clusters 2 and
3 are neither weekday- nor weekend-biased.
The clusters can also be differentiated in terms of their

average ozone concentrations and the spatial variation
in ozone concentrations. Clusters 1, 2, and 3, the warm
clusters, have high ozone concentrations while clusters 4
and 5, the cool clusters, have low concentrations. Clus-
ter 1 has relatively higher ozone concentrations in the
urban/source-intensive area (i.e. DT and 22&C) and
lower concentrations in the semi-rural areas (i.e. FG
and TANG). The highest levels and lowest levels,
respectively, in cluster 2 and 3 occur east/southeast
(downwind) and west/northwest (upwind) of the urban/
source-intensive area. Ozone transport to areas east of
the urban area prevails among these clusters. Ozone
concentrations in cluster 4 exhibit little spatial variation.
Cluster 5 has substantially depressed concentrations in
downtown Tucson while also having relatively homo-
geneous concentrations throughout the rest of the
metropolitan area.
Moran’s I tests verify the presumed absence of sig-

nificant (�=0.05) spatial autocorrelation among ozone
concentrations for all of the clusters. Plots of distance
between monitors vs. absolute difference in ozone
concentrations between monitors also reveal no sig-
nificant (�=0.05) spatial autocorrelation among ozone

concentrations (Fig. 3). The ozone measurements at the
monitors are therefore spatially independent of one
another. For space reasons, detailed results from the
Moran’s I tests are not presented.

5.2. Principal components analysis

The cluster-specific standardized PCAs results in 17,
15, 17, 17, and 18 components, respectively, for clusters
1, 2, 3, 4, and 5. The components explain at least 96%
of the variance in the predictor variable data sets. The
number of components (which are orthogonal) denotes
the maximum number of predictor variables to be
included in the linear regression models. For each com-
ponent, a single variable is selected that has both a
relatively high loading and a relatively high correlation
with the dependent variable. Every possible type of
spatial variable (refer to Table 1) is represented by at
least one of the cluster-specific components.

5.3. Multiple linear regression modeling

The models predict deviations from average daily
maximum ozone concentrations thus the models’ pre-
dicted concentrations are added to the average con-
centrations to produce final predictions. The frequency
distributions of the deviations were approximately nor-
mally distributed. The cluster-specific models are devel-
oped with an initial group of 15–18 predictor variables.
Backward stepwise regression (F-remove=0.05) results
in models containing between 5 and 10 variables. Final
variables are summarized in Table 3, which include the
letter codes used to detail the individual models in
Table 4. All of the spatial variable categories (i.e. proxy
variables and short and long distance VOC and NOx

emissions variables) and all of the meteorological vari-
ables are present within one or more of the predictor
variables.

Table 2

Characteristics of the five clusters based on spatial ozone patternsa

Cluster Total

days

Mode

month

Day

type

Mean

22&C DT FG HV POM RIV SNP TANG Ozone MAXT MINRH INSOL MWS NWS MWD NWD

1 105 August WE 73 64 58 58 71 73 67 60 64 36.8 20.3 25.99 1.8 1.8 134 268

2 45 August Both 79 59 66 62 72 68 82 55 68 37.0 25.7 26.04 1.3 1.7 144 283

3 109 July Both 67 54 67 54 63 61 71 55 63 35.9 20.3 26.51 1.6 2.2 145 282

August

4 231 April WE 59 50 55 51 59 61 57 58 56 33.1 15.7 26.06 2.1 2.8 139 231

5 164 May WD 59 44 55 53 58 60 63 56 55 33.5 18.0 26.00 2.1 2.8 144 244

June

a Values for 22&C, DT, FG, HV, POM, RIV, SNP, and TANG are average ozone concentrations (ppb) at those ozone monitors while Mean

Ozone is the average of concentrations at 22&C, DT, FG, SNP, and TANG. Concerning the type of day on which the clusters occur, WD refers to

weekdays, WE refers to weekends, and both refers to both weekdays and weekends. The remaining variables pertain to meteorology and are as

follows: MAXT, daily maximum temperature (�C); MINRH, minimum relative humidity (%); INSOL, total daily insolation (MJ m�2); MWS, wind

speed (m s�1) between 08:00 and 10:00; NWS, wind speed (m s�1) between 11:00 and 13:00; MWD, wind direction (�) between 08:00 and 10:00; and

NWD, wind direction (�) between 11:00 and 13:00.
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Fig. 3. Scatter plots of distance between monitors vs. absolute difference in ozone concentrations between monitors for each of the five clusters.

Absolute difference in ozone concentrations (ppb) is on the y-axis while distance between monitors (m) is on the x-axis. The linear trend line and

correlation values (r) are included on the plots. None of the trend lines have slopes that are significantly (�=0.05) different than zero.
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As noted previously, the models are predictive rather
than explanatory, however, we have confidence that
most of the linear regression assumptions have been
obeyed and that none of the assumptions have
been violated severely. Therefore, denoting the relative

importance of each predictor variable in each model,
which is an explanatory procedure, is executed to
merely highlight the differences between the models.
The value of the standardized coefficient (�) is used as a
proxy for importance.
Most of the models contain a member of each broad,

non-BVOC, spatial emissions category (i.e. local and
upwind motor vehicle and other anthropogenic emis-
sions). Variables related to BVOC emissions are absent
presumably due to the relatively smooth variations in
BVOC emissions across the metropolitan area. Conse-
quently, BVOCs are not strong spatial predictors. VOC
and NOx variables and the exposure (EXP) variable are
always present. Specifically, the cluster 1 model does not
contain long distance, other anthropogenic emissions
variables and proxy emissions variables (i.e. road length
and built-up land). Local, other anthropogenic VOC
emissions are the most important predictors. The cluster
2 and 3 models do not contain local, motor vehicle
variables. The most important predictors in these mod-
els are road length and long distance, other anthro-
pogenic VOC emissions, respectively. Cluster 2

Table 3

Cluster-specific linear regression models including predictor variables

and associated standardized coefficients (�) and unstandardized co-

efficients

� Unstandardized coefficients

Cluster 1 variables

Q 0.7265 4.1268�10�7

I �0.2743 �1.7272�10�8

T �0.2730 �2.2207�10�5

H 0.2588 1.6161�10�6

AB 0.1978 0.0071

E 0.1514 9.9718�10�9

M �0.1180 �4.7609�10�9

(Constant) – �0.0010

Cluster 2 variables

X 0.5356 4.8446�10�12

G 0.3475 2.4632�10�9

AB 0.2389 0.01550

P �0.1525 �2.3344�10�9

N �0.1286 �1.0765�10�8

(Constant) – �0.0259

Cluster 3 variables

M �0.4465 �1.98762�10�8

AB 0.3684 �3.4253�10�9

P �0.3315 0.0128

G 0.2713 1.3448�10�9

L 0.2157 2.6470�10�10

V 0.1907 2.4804�10�9

C �0.1289 �1.0480�10�7

(Constant) – �0.0131

Cluster 4 variables

J �0.7770 �4.7059�10�9

S 0.6516 3.4325�10�7

AB 0.4489 0.0078

U �0.3973 �1.4694�10�8

A 0.2028 2.9557�10�8

F 0.1437 4.9911�10�7

Y 0.1386 1.8557�10�7

Z �0.1283 �1.1370�10�5

O 0.0904 2.5468�10�8

(Constant) – �0.0063

Cluster 5 variables

J �1.3736 �1.1063�10�8

R 0.6667 1.4947�10�8

D 0.3540 8.6981�10�6

AB 0.3340 0.0127

K 0.2448 4.9931�10�10

U �0.2374 �1.2554�10�8

AA 0.1784 7.8537�10�9

L �0.1311 �1.6520�10�10

W �0.1126 �1.3318�10�9

B �0.0883 �1.5076�10�8

(Constant) – �0.0085

Table 4

Letter codes and descriptions of predictor variables in the 1-h regres-

sion modelsa

Letter code Description

A MVOC (20 km)8 AM�MAXT

B MNOX (20 km)8 AM�MAXT

C MVOC (10 km)8 AM�MINRH

D MNOX (5 km)8 AM�IWSDaily

E MVOC (20 km)11 AM�MINRH

F MVOC (20 km)11 AM�IWSDaily

G MVOC (10 km)11 AM�PRESS

H MNOX (10 km)11 AM�IWS11 to 1

I MVOC (5 km)11 AM�MAXT

J MNOX (2 km)11 AM�PRESS

K OVOC (20 km)�PRESS

L ONOX (20 km)�PRESS

M OVOC (10 km)�MAXT

N ONOX (10 km)�INSOL

O ONOX (5 km)�MINRH

P ONOX (5 km)�PRESS

Q OVOC (2 km)�MAXT

R OVOC (2 km)�PRESS

S OVOC (2 km)�INSOL

T ONOX (2 km)�IWS11 to 1

U ONOX (2 km)�PRESS

V BU (40 km)�PRESS

W RL (40 km)�IWS11 to 1

X RL (40 km)�PRESS

Y BU (40�30 km)�MINRH

Z BU (40�30 km)�IWSDaily

AA BU (40�30 km)�PRESS

AB EXP

a Refer to Table 1 for descriptions of emissions variables. Meteor-

ological variables are as follows: MAXT, daily maximum temperature;

PRESS, average daily pressure; IWS11 to 1, inverse of 11:00–13:00 wind

speed; IWSDaily, inverse of average daily wind speed; INSOL, total

daily insolation; and MINRH, daily minimum relative humidity.
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represents summer situations where ozone production
in Tucson is high, and the transport of ozone and its
precursors eastward across the metropolitan area is an
extremely important process. The cluster 4 model does
not contain long distance, other anthropogenic vari-
ables while the cluster 5 model contains all of the non-
BVOC variables. The most important predictors in
these models are local, motor vehicle NOx emissions,
hence the scavenging of ozone by nitric oxide (NO) is a
major controlling factor of ozone on days in clusters 4
and 5. Hence the overall low ozone concentrations and
the extremely low concentrations at the DT monitor,
especially on cluster 5 days. Due to increased motor
vehicle traffic on cluster 5 days, which are mostly week-
days, these days have higher NOx emissions and conse-
quently more scavenging than do cluster 4 days, which
are mostly weekend days.

5.4. Examination of cluster-specific errors

It is reasonably safe to assume that none of the mod-
els have excluded important predictor variables. Results
from the Moran’s I tests indicate that there is no sig-
nificant (�=0.05) spatial autocorrelation among the
errors for any of the clusters, while examinations of
plots of distance between monitors vs. absolute differ-
ence in residuals between monitors reveal significant
(�=0.05) spatial autocorrelation among residuals only
for cluster 3 (Fig. 4). The possible spatial autocorrela-
tion present in the cluster 3 model is caused by relatively
large underpredictions at TANG compared to the rest
of the monitors. However, the errors at all the monitors,
including TANG, are relatively small compared to
errors for the other models. For space reasons, results
from the Moran’s I tests and temporal examinations are
not presented. In addition, large errors are not con-
centrated during certain years, months, weekdays, or
weekends, thus important temporal variables were not
excluded from the models. Finally, none of the monitors
have anomalously large errors (Table 5). Large errors
are a flag for a misspecified model. For example, if the
EXP variable were not included in the models, predicted
ozone concentrations at HV would be considerably
more erroneous than those at the rest of the monitors.

5.5. Evaluation of pooled predictions

The models are evaluated through the examination
of cross-validated error statistics (Table 6). Predictions of
daily maximum 1-h average ozone concentrations are
typically within 4 ppb (RMSE) of the observed values,
and are neither positively nor negatively biased (MBE).
In addition, the pooled predictions have just 7% error
as well as an R2 value of 0.90 and a D1 value of 0.97.
The PSE value of 0.08 indicates that 8% of the error is
model-derived, and that the remaining 92% is natural

variability of the data that cannot be reduced. Pre-
sumably, much of this error is derived both from inac-
curate estimates of pollutant emissions and from spatial
aggregation. The urban/source-intensive monitors,
22&C and DT, have the most accurate predictions while
HV, POM, and RIV, the three monitors with the least
historical data in the model development process, have
the least accurate predictions.

5.6. Evaluation of HOD predictions

Typically, a linear regression model performs poorly
on the tails of the dependent variable’s distribution,
overestimating the lowest observed values and under-
estimating the highest observed values (Clark and Karl,
1982). However, developing separate models for each
cluster decreases the errors associated with extreme
values. The cluster-specific models account for the
spatio-temporal processes responsible for spatio-tem-
poral ozone patterns. HOD predictions are almost as
accurate as the complete set of pooled predictions
(Table 6). HOD predictions have slightly lower R2 and
D1 values, but have equal or smaller percent error
values. However, a considerable increase in PSE values
from 0.08 to 0.32 indicates that a greater proportion of
model-derived error is present in the HOD predictions.
Nevertheless, the HOD predictions are still valid and
useful for determining spatial variations in elevated
ozone concentrations.

5.7. Maps of predicted ozone design values

Maps of ozone design values for 1997 and 1998 indi-
cate a strong likelihood that an exceedance did not
occur anywhere in the Tucson region in either of those
years (Figs. 5 and 6). After adjusting the highest design
values by adding the average residuals from the 22&C
and SNP monitors, the maximum design value (102
ppb) is still less than 82% of the NAAQS (> 125 ppb;
Tables 7 and 8). All the cells with design values in the
top 1% of the 1997 values (i.e. the black cells) are loca-
ted either in or downwind of the urban/source-intensive

Table 5

Root mean squared error values in ppb at the ozone monitors for each

of the five clusters

Site 1 2 3 4 5

22&C 4.2 4.7 3.5 2.9 2.8

DT 4.5 4.5 3.4 3.1 3.1

FG 4.3 6.0 4.1 3.9 4.1

HV 5.9 5.4 4.0 4.2 3.5

POM 6.5 5.8 3.6 4.1 4.7

RIV 6.6 5.5 4.7 4.0 4.2

SNP 5.9 5.7 4.2 3.2 4.4

TANG 4.2 5.1 4.5 3.6 4.1
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Fig. 4. Scatter plots of distance between monitors vs. absolute difference in residuals between monitors for each of the five clusters. Absolute dif-

ference in ozone concentrations (ppb) is on the y-axis while distance between monitors (m) is on the x-axis. The linear trend line and correlation

values (r) are included on the plots. Only the trend line for cluster 3 has a slope that is significantly (�=0.05) different than zero.
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portion of the region. In 1997, the largest design values
occur mostly between the 22&C and SNP monitors (i.e.
downwind, suburban area). In 1998, the largest value
occurs in the highly industrialized portion of the city
while the downwind areas have slightly smaller values.
With spatial interpolation methods, such as distance-
weighting and kriging, the above potentially high ozone
areas would not have been identified.
Both design value maps illustrate the importance of

local VOC emissions, local NOx emissions, especially
from motor vehicles, and the predominant transport of
VOCs, NOx, and ozone from west to east across the
Tucson metropolitan area. Upwind areas tend to have
small VOC and NOx emissions and receive negligible
amounts of transported ozone. Within the source-
intensive area, ozone levels are reduced by large NOx

emissions. The highest levels occur either in areas that
have both large VOC and NOx emissions or areas
that are slightly downwind of the source-intensive area.
More importantly, the downwind areas have more reli-
able predictions of ozone levels.
Most importantly, the maps show that the City of

Tucson, which is the most populated part of the Tucson
region, is almost completely covered with reliable pre-
dictions of design values. Approximately 90% of the
region’s population are associated with a reliable design
value (Table 8). The remaining 10% are located mostly
in the industrial (i.e. NO DATA) areas towards the
center of the city (i.e. urban/source-intensive area).
Large VOC and NOx emissions, which are out of the
range of the models, make ozone predictions unreliable
in those industrial areas.
The maps also indicate that additional ozone moni-

tors are needed in the Tucson region. Based on model
results, ozone monitors should be placed in the follow-
ing areas for the following reasons: (1) near the city’s

industrial areas to protect public health and improve
modeling; (2) in a downwind, semi-rural location to
protect public health; and (3) at a downwind, forested,
high elevation site (e.g. peaks in the Santa Catalina
and Rincon Mountains) to protect forest health and
improve modeling. All these areas are substantially
populated by sensitive receptors, either humans or trees,
and have potentially unhealthy ozone levels.
Model improvement involves increasing the model’s

accuracy as well as increasing its spatial interpolation
and extrapolation capabilities. This can be achieved by
placing monitors in industrial and rural areas, which
have relatively unreliable design values. These areas
include heavy anthropogenic emissions areas and
downwind areas (i.e. high elevation, forested areas) with
negligible anthropogenic emissions but heavy biogenic
emissions. With the dominance of BVOC emissions
and the absence of local anthropogenic emissions in
the Tucson region’s forested areas, a monitor in a high
elevation, forested environment would increase the pres-
ence and importance of BVOC emissions in the regres-
sion models. This monitor would also cause a
substantial increase in reliable, predicted ozone levels

Table 6

Evaluation statistics for pooled, daily maximum 1-h average ozone predictions for each monitor, all monitors, and HODsa

Site/days n OAVG PAVG OSD PSD MBE RMSE MAE D1 PSE R2 % Error

22&C 218 63.9 63.2 12.9 12.4 �0.7 3.3 2.5 0.98 0.12 0.94 5

DT 218 52.0 52.6 12.7 12.7 0.6 3.5 2.9 0.98 0.04 0.93 7

FG 218 58.2 59.3 11.5 11.0 1.2 4.2 3.3 0.96 0.16 0.88 7

HV 59 53.2 54.8 9.5 10.4 1.7 4.4 3.5 0.95 0.15 0.85 8

POM 84 62.5 61.9 12.9 11.7 �0.6 5.4 4.0 0.95 0.19 0.82 9

RIV 69 64.2 63.4 10.3 9.5 �0.8 5.0 3.9 0.93 0.17 0.76 8

SNP 218 64.3 62.9 12.5 12.3 �1.4 4.4 3.4 0.97 0.15 0.89 7

TANG 218 57.2 57.7 10.3 10.3 0.6 3.7 2.9 0.97 0.06 0.88 6

ALL 1302 59.3 59.4 12.7 12.2 0.0 4.0 3.1 0.97 0.08 0.90 7

HODs 149 76.8 76.9 10.8 8.9 0.1 5.5 4.2 0.92 0.32 0.75 7

a Descriptions of statistics are as follows: n, number of cases; OAVG, average observed value (in ppb); PAVG, average predicted value (in ppb);

OSD, standard deviation of observed values (in ppb); PSD, standard deviation of predicted values (in ppb); MBE, mean biased error (in ppb); RMSE,

root mean squared error (in ppb); MAE, mean absolute error (in ppb); D1, index of agreement; PSE, proportion of systematic error; R2, coefficient

of determination; % Error, OAVG/RMSE.

Table 7

Monitor specific observed and predicted design values and residuals

for 1997 and 1998

1997 1997 1998 1998

Monitor Predicted Observed Residual Predicted Observed Residual

22&C 96 99 �3.1 93 94 �1.0

DT 82 84 �2.5 81 82 �1.3

FG 84 89 �5.3 81 84 �2.7

SNP 98 101 �3.5 89 94 �5.2

TANG 80 83 �2.7 80 82 �2.6
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Fig. 5. Predicted 1997 design values of daily maximum 1-h average ozone concentrations in the Tucson region. A design value is the fourth highest

value at a cell from 1995 to 1997.
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Fig. 6. Predicted 1998 design values of daily maximum 1-h average ozone concentrations in the Tucson region. A design value is the fourth highest

value at a cell from 1996 to 1998.
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throughout the region’s rural areas by increasing the
range of BVOC, AVOC, and ANOx emissions used
during modeling. Consequently, ozone impacts on
humans, crops, and forests could be better assessed.

6. Summary and conclusions

This paper illustrates the potential for overcoming the
obstacle of sparse spatial observations in the context of
air pollution mapping. A small number of air quality
monitors greatly reduces the availability of appropriate
mapping methods. Nevertheless, this paper presents a
linear regression-based solution that involves the har-
vesting of multi-temporal measurements at monitors
and multi-temporal, spatially continuous predictor
variables to compensate for the relative lack of monitors
across a region. Without the multi-temporal compo-
nent, the predictive mapping of air pollution con-
centrations with few air quality monitors could not be
performed adequately via linear regression. For the
example presented in this paper, it is possible to use
the multi-temporal component because the emissions
environment affecting ozone concentrations at each of
the monitors varies over time; these fluctuating envir-
onments provide the range of information to predict
ozone levels over space. Using various predictor vari-
ables created partially within a GIS, different spatial
processes responsible for the spatial patterns of ozone
pollution are represented. The employment of cluster
analysis, PCA, and a stepwise regression procedure
reduces a large list of potential predictor variables to a
reasonable number of variables that, when combined
within a linear regression model, explain nearly all the
variability in the ozone concentrations.
The regression-based mapping methodology produces

accurate maps of ozone levels. Estimates of ozone pre-
cursor chemical emissions and proxy variables (e.g. road
length) are suitable predictors. The maps illustrate the
importance of local emissions of ozone precursor
chemicals and the predominant transport of those chemi-
cals and ozone from west to east across the Tucson
metropolitan area. Composite maps are extremely
important from an air pollution policy perspective, for
they not only show where potential exceedances of the

NAAQS might be occurring but the maps also provide
some insight on suitable locations of future ozone moni-
tors. The accurate mapping of ozone levels provides just
one example of the fruitfulness of employing multi-tem-
poral data and multi-variate statistical techniques in a
mapping methodology. Although this paper employs
linear regression, other predictive methods such as non-
linear regression and artificial neural networks are defi-
nitely worth exploring in the context of air pollution
mapping. Finally, this study’s general methodology
could certainly be extended to other atmospheric pollu-
tants and to other environmental variables.
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