## Impedance \& Resonance in an RLC Circuit

| equipment needed | qty. |
| :--- | :---: |
| function generator | 1 |
| 100 nF capacitor | 1 |
| 1 mH inductor | 1 |
| multimeter | 2 |
| LRC meter | 1 |
| BB wires | mult. |

AC circuits are electric circuits with alternating voltages and currents. Some important applications are electrical power distribution, radio communication, and audio equipment. In this exercise, you'll study an important phenomenon, $A C$ resonance in a circuit.

The notion of impedance is a critical concept. Impedance is an extension of resistance,


The circuit above is a simple AC circuit. The symbol to the left represents an AC voltage source. You recognize the symbols for an inductor and a capacitor. The resistor shown has resistance $R$ to a DC or an AC current in the circuit, but for AC currents, the inductor \& capacitor also limit the current through
properties that are likewise measured in ohms. These are capacitive reactance and inductive reactance.

$$
\begin{align*}
& X_{L}=\omega L \\
& X_{C}=\frac{1}{\omega C}
\end{align*}
$$

$\omega$ is the angular frequency of the AC current ( $\omega=2 \pi f$ ) Notice that $X_{L}$ increases with frequency but $X_{C}$ decreases. A quantity called impedance totals the effects of $R, X_{L} \& X_{C}$ :

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \quad \text { eq. } 3
$$

The RMS current in the circuit is then given by Ohm's Law:

$$
V=I Z
$$

$V$ is the RMS voltage of the AC voltage source.

Side note: More complete analysis of an AC circuit can be done using complex variables (a variable with a real \& an imaginary component). In this type of analysis:

$$
\begin{gathered}
Z_{L}=j \omega L \quad Z_{C}=\frac{1}{j \omega C} \\
Z=R+Z_{L}+Z_{C}
\end{gathered}
$$

Here, $j=\sqrt{-1}$. All the values for the circuit (voltages, currents, and impedances) are represented by complex numbers (which really represent sinusoidal functions). In today's exercise, we won't use this more sophisticated complex analysis.

In eq. $3, Z$ is a minimum when:

$$
\begin{aligned}
& X_{L}-X_{C}=0 \\
& \omega L-\frac{1}{\omega C}=0
\end{aligned}
$$

$$
\begin{align*}
& \omega L=\frac{1}{\omega C} \\
& \omega_{r}=\frac{1}{\sqrt{L C}} \tag{eq.5}
\end{align*}
$$

$\omega_{r}$ is the so called resonant frequency of the circuit, the frequency that manifests the highest current. You'll put together a circuit like the one above, and then expose it to a sinusoidal voltage of variable frequency. You'll measure current for numerous frequencies and plot current as a function of frequency. The resonant frequency will be apparent in your plot, which will look something like the one below.


## Procedure

1. Using the LRC meter, measure the capacitance of your capacitor and the inductance of your inductor.

$$
\begin{aligned}
& C= \\
& \text { F } \\
& L= \\
& \text { H }
\end{aligned}
$$

2. Calculate the resonant angular frequency according to eq 5 .

$$
\omega_{r}=
$$

$\qquad$ Hz
3. Calculate the resonant cyclic frequency $f_{r}$, according to $\omega_{r}=2 \pi f_{r}$. The frequency display on the function generator reads cyclic frequency.

$$
f_{r}=\ldots H z
$$

4. Assemble the circuit below. The AC source symbol represents the function generator. Note that we won't include a resistor, but the circuit will have a few
ohms of resistance due to the components. Set the ammeter on the 200 mA AC setting.

5. Remove the function generator from the circuit and replace it with an ohmmeter. This will allow you to measure the resistance of the circuit. You must also connect a shorting wire across the capacitor.

$$
R=
$$

$\qquad$
6. Now reinstall the function generator in the circuit. Switch the ohmmeter to a voltmeter and include it in the circuit as in the figure below.

7. Make a table to record the current $I$ for many values of $f$.
8. Switch on the function generator, and set the frequency to 1000 Hz . Set its
voltage knob so that the voltmeter reads 1.0 V . Even if your function generator has a voltage readout, do not rely on this value. It will not display the correct voltage.
9. Record $I$ in your table.
10. Change $f$ to 1500 Hz . Now reset the function generator's voltage so that the voltmeter again reads 1.0 V .
11. Record $I$ for this new setting.
12. Continue raising the frequency in increments of 500 Hz . For each frequency, reset the voltage to 1.0 V , and record $I$.
13. Plot $I$ as a function of $f$.
14. From your graph, estimate the frequency of the peak.

$$
\omega_{r}=
$$

$\qquad$ Hz
15. Calculate the percent error of your measured peak frequency, using the theoretical value as the accepted value.

$$
\% \text { error }=
$$

$\qquad$ \%

## Activity 2

1. Using MS Excel or graphing software, make a plot of the theoretical frequency response like the one on the previous page. In Excel, you can make a spreadsheet something like the one shown below (this one also contains a

| 4 | A | B | C | D | E | F | G | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | V | f | $\omega$ | I meas | XL | XC | Z | I calc |
| 2 | 1 | 6000 | 37699 | 4.55 | 42.90 | 258.06 | 215.27 | 4.65 |
| 3 | 1 | 7000 | 43982 | 5.66 | 50.05 | 221.19 | 171.28 | 5.84 |
| 4 | 1 | 8000 | 50265 | 7 | 57.20 | 193.54 | 136.52 | 7.32 |
| 5 | 1 | 9000 | 56549 | 8.67 | 64.35 | 172.04 | 107.91 | 9.27 |
| 6 | 1 | 10000 | 62832 | 10.77 | 71.50 | 154.84 | 83.63 | 11.96 |
| 7 | 1 | 11000 | 69115 | 13.77 | 78.65 | 140.76 | 62.50 | 16.00 |
| 8 | 1 | 12000 | 75398 | 18.1 | 85.80 | 129.03 | 43.79 | 22.84 |
| 9 | 1 | 13000 | 81681 | 27.6 | 92.95 | 119.10 | 27.07 | 36.94 |
| 10 | 1 | 14000 | 87965 | 48.2 | 100.10 | 110.60 | 12.61 | 79.28 |
| 11 | 1 | 15000 | алวse | 1156 | 10725 | 1027 | 80 | 1228 |

column for the measured current values). For each frequency, $\omega$ is calculated from $f, X_{L}$ is calculated from
$L \& \omega, X_{C}$ from $C \& \omega, Z$ from
$R, X_{L} \& X_{C}$, and $I$ from $Z \& V=1.0 V$.

Remember that $X_{L}, X_{C} \& Z$ are all frequency dependent, and so must be recalculated in each row of the spreadsheet.
2. Make a plot of I vs.f. In Excel, it's called a "scatter plot."
3. You now have a theoretical curve of $I$ vs $f$. Your measured $I$ values can be plotted on the same graph as a test of the theory. Such a plot is shown below.

4. Comment on differences between the two curves (measured vs theoretical current). Try to think of reasons for any systematic differences. For example, how might the circuit's measured parameters differ from your values, and what effects would the differences have?

