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Motivation and Outline

• Various financial crises have highlighted the paramount importance of

systemic risk in the financial sector.

• The tremendous cost of systemic risk requires instruments for an efficient

macroprudential regulation of financial institutions.

Topics of the talk

(i) Models of systemic risk: a class of network models

(ii) Measures of systemic risk: a multivariate approach

Stefan Weber – Leibniz Universität Hannover
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Part I: Models of Systemic Risk
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Motivation

• Systemic risk: financial system as a whole is susceptible to failures initiated

by the characteristics of the system itself

• Local and global interaction channels:

direct liabilities, bankruptcy costs, cross-holdings and fire sales

• Provide fully integrated model; this is missing in the literature so far
– Bankruptcy costs are, for example, considered by Rogers & Veraart (2013), Elliott, Golub &

Jackson (2014), Elsinger (2009) and Glasserman & Young (2014), cross-holdings e.g. by

Elsinger (2009) and Elliott et al. (2014). Cifuentes et al. (2005) incorporate fire sales into the

framework of Eisenberg & Noe (2001); their approach is further extended by Gai & Kapadia

(2010), Nier, Yang, Yorulmazer & Alentorn (2007), Amini, Filipović & Minca (2013), and Chen,

Liu & Yao (2014).

• In numerical case studies we will analyze the number of contagious defaults
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Outline – Part I: Models of Systemic Risk

(i) Comprehensive model of financial network

• direct liabilities, bankruptcy costs, cross-holdings, fire sales

(ii) Existence of equilibrium and algorithm

(iii) Numerical case studies

Stefan Weber – Leibniz Universität Hannover
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A Financial Network Model
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Main Interaction Channels

Single period model: Snapshot of a banking system that continues to exist

afterwards.

Banks are connected to each other via three different channels:

• Direct liabilities: Banks have nominal liabilities against each other.

• Fire sales: If the portfolios of the banks contain the same assets, changes

in asset prices simultaneously influence the net worths of these banks.

• Cross-holdings: Banks may hold shares of each other.

In addition, we include bankcruptcy costs.
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Network of Liabilities
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Model Setup

Financial system:

• Banks: N = {1, . . . , n}

• Vector of financial net worths of banks: w ∈ Rn+

External assets:

• Cash asset: r ∈ Rn+

• Illiquid asset: s ∈ Rn+ with price q = f(θ)

– θ is the sold quantity of the illiquid asset in the market

• Corresponding total value: ri + siq, i ∈ N

Stefan Weber – Leibniz Universität Hannover
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Liabilities

• Nominal liabilities matrix: L ∈ Rn×n

– Lij ≥ 0 interbank obligation of bank i to bank j

• External liabilities: l ∈ Rn+

• Vector of total liabilities: p̄ ∈ Rn+ : p̄i =
∑
j∈N Lij + li, i ∈ N .

• Relative liabilities matrix: Π ∈ Rn×n : Πij =

Lij/p̄i, if p̄i > 0

0, otherwise.

• Realized payments: p ∈ Rn+ such that pi ≤ p̄i for i ∈ N

• Value of payments: ∑
j∈N

Πjipj .

Stefan Weber – Leibniz Universität Hannover
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Cross-Holdings

• Cross-holdings matrix: C ∈ Rn×n

– Cij =̂ fraction of bank i that is held by bank j

– Cij ≥ 0, Cii = 0,
∑
j∈N Cij < 1

• Value of cross-holdings: ∑
j∈N

Cji ·max(wj , 0)

• Price impact:

– A share νi(p,w) of cross-holdings can be exchanged against the liquid

asset to settle liabilities

– Banks can only realize a fraction of λi ∈ [0, 1]

Stefan Weber – Leibniz Universität Hannover
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Bankruptcy Costs

• Banks that cannot fulfill their total obligations (i.e. pi < p̄i) are bankrupt

• Legal or administrative expenses may be incurred

• Two parameters describe bankruptcy costs:

– Realized fraction of external asset value: 0 ≤ α ≤ 1

– Realized fraction of interbank asset value: 0 ≤ β ≤ 1

Stefan Weber – Leibniz Universität Hannover
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Price-Payment Equilibrium
A price-payment equilibrium is a pair (p∗, q∗) ∈ [0, p̄]× [qmin, q0] ⊆ Rn+1, consisting of a clearing

payment vector p∗ and a clearing price q∗, such that

(p
∗
,q
∗
) = Φ(p

∗
,q
∗
),

Φi(p, q) :=

{
χi(p, q), for i = 1, . . . , n,

f(θ(p, q)), for i = n+ 1,

χi(p, q) :=

{
p̄i, if ri + siq + ηi(p, q) ≥ p̄i,
α[ri + siq] + β [ηi(p, q)] , otherwise,

ηi(p, q) :=
∑
j∈N

Πjipj + µi(p, q)
∑
j∈N

Cji max(w
∗
j (p, q), 0),

µi(p, q) = νi(p, q)λi + 1− νi(p, q),

νi(p, q) = min

(
max(p̄i − ri −

∑
j∈N Πjipj − (1− Ii)siq, 0)

λi
∑
j∈N Cji max(w∗j (p, q), 0)

, 1

)
,

θ(p, q) :=
∑
i∈N

min

(
max(p̄i − ri −

∑
j∈N Πjipj − Iiλi

∑
j∈N Cji max(w∗j (p, q), 0), 0)

q
, si

)
.
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Existence and Computation of Equilibria

(i) There exist a unique greatest and a unique smallest price-payment

equilibrium, (p+, q+) and (p−, q−).

(ii) The equilibria can be computed in at most n+ 1 iterations of our

greatest/smallest-clearing-algorithm.

Stefan Weber – Leibniz Universität Hannover
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Algorithm
Set k = 0, (p(0), q(0)) := (p̄, q0), D−1 := ∅.

Determine w(0) := w∗(p(0), q(0)) and

D0 = {i ∈ N | w(0)
i < 0} and S0 = {i ∈ N | w(0)

i ≥ 0}.

If D0 = D−1 and no bank has to liquidate its illiquid asset holdings, i.e. for all i ∈ N :

ri +
∑
j∈N

Πjip
(0)
j + Iiλi

∑
j∈N

Cji max(w
(0)
j , 0) ≥ p̄i,

terminate. Otherwise go to Step 2.

Stefan Weber – Leibniz Universität Hannover
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Algorithm (2)
Step 1: Determine the sets of defaulting and surviving banks

Dk = {i ∈ N | w(k)
i < 0}, Sk = {i ∈ N | w(k)

i ≥ 0}.

If Dk = Dk−1, terminate. Otherwise, go to Step 2.

Step 2: Set p
(k+1)
i = p̄i for all i ∈ Sk, p

(k+1)
i = xi for all i ∈ Dk, q(k+1) = y and

w(k+1) = w∗(x, y), where (x, y) is determined as the maximal solution to the following
system of equations:

xi = α [ri + siy] + β

 ∑
j∈Dk

Πjixj +
∑
j∈Sk

[Πjip̄j + λiCji max(w
∗
j (x, y), 0)]

 ,
y = f

 ∑
i∈Dk

si +
∑
i∈Sk

min

(
ζ
(k)
i (x, y)

y
, si

) ,

ζ
(k)
i (x, y) = max

p̄i − ri − ∑
j∈Dk

Πjixj −
∑
j∈Sk

[Πjip̄j + IiλiCji max(w
∗
j (x, y), 0)], 0

 , ∀i ∈ Sk.

Set k → k + 1 and go to Step 1.

Stefan Weber – Leibniz Universität Hannover
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Numerical Examples
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Simulation Methodology (1)

The integrated financial system is characterized by:

(Π, p̄, r, s, f , α, β, λ, C)

• Direct liabilities

– Simulate Π as a random network with fixed characteristics.

– Choose a fixed value for p̄.

• Fire sales

• Bankruptcy costs

• Cross-holdings

Stefan Weber – Leibniz Universität Hannover
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Simulation Methodology (2)
The integrated financial system is characterized by:

(Π, p̄, r, s, f , α, β, c, d)

• Fire sales

– Total external assets e are allocated to liquid and illiquid assets:

r = (1− ρ) · e, s = ρ · e
– Inverse demand function: f(x) = exp(−γx), γ > 0

→ Fire sales parameters: γ, ρ

• Bankruptcy costs

– Realized fraction of external asset value: α

– Realized fraction of interbank asset value: β

→ Bankruptcy costs parameters: α, β

Stefan Weber – Leibniz Universität Hannover
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Simulation Methodology (3)

The integrated financial system is characterized by:

(Π, p̄, r, s, f , α, β, λ, C)

• Cross-holdings

– C is generated as an Erdös-Rényi random network:

∗ Diversification d

= Expected number of interbank shareholders

∗ Integration c

= Fraction of net worth sold as cross-holding shares

– For all i ∈ N : λi = (1− c)κ, for fixed κ ∈ [0, 1]

→ Cross-holdings parameters: c, d

Stefan Weber – Leibniz Universität Hannover
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Simulation Methodology (4)

(i) Choose parameter values (α, β, γ, ρ, c, d).

(ii) Simulate direct liabilities Π, cross-holdings C and corresponding external

assets.

(iii) Choose one bank i uniformly at random and set its external assets to zero,

i.e. ri = si = 0.

(iv) Calculate the greatest clearing equilibrium and the induced number of

defaults.

(v) Repeat simulations to compute the empirical distribution of the defaults,

their average number and their variance.

Stefan Weber – Leibniz Universität Hannover
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Erdös-Rényi Networks
n = 100, average out-degree: 15

Stefan Weber – Leibniz Universität Hannover
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Bankruptcy Costs and Fire Sales
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Contour plots of the number of defaults for n = 100 banks as a function of

(a) bankruptcy costs and (b) fire sales, averaged over 1000 simulations of Π.

Observations and Implications

• Sharp boundaries between regimes, concentration on extreme scenarios

• Bankruptcy costs are an important factor. Policies should thus improve the efficiency of managing defaults and restructuring institutions as

well as limit the complexity of financial products and the operations of financial institutions. Last wills of institutions could also be a

promising instrument.

• The significance of illiquidity emphasizes that providing short-term funding is important. Quantitative easing might be an appropriate

instrument for stabilizing the banking sector.
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Capital Adequacy Ratios
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Level sets of the lowest capital adequacy ratio CAR := mini∈N CARi as a function of the

buffer δ and the proportion ρ of the illiquid asset; the solid line is the boundary between

many (lower right) and few (upper left) defaults; averaged over 100 simulations of Π.
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Cross-Holdings: Separate and Joint Effects
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cross-holdings matrix C.
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Erdös-Rényi vs. Core-Periphery Networks
n = 100, nC = 10, nP = 90
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Core-Periphery: Fire Sales
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Contour plots of the number of defaults for n = 100 banks as a function of fire sales,

conditional on an initial core shock.
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Measures of Systemic Risk
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Part II: Measures of Systemic Risk

Stefan Weber – Leibniz Universität Hannover
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Outline – Part II: Measures of Systemic Risk

(i) Measures of systemic risk

• General definition on the basis of acceptance sets and system models

(ii) Cash-flow and value models

• Aggregration functions

• Connection to network models

Stefan Weber – Leibniz Universität Hannover
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Outline – Part II: Measures of Systemic Risk

(i) Measures of systemic risk

• General definition on the basis of acceptance sets and system models

(ii) Cash-flow and value models

• Aggregration functions

• Connection to network models

Before we focus on these issues, we start with a short

Review of the theory of monetary risk measures

Stefan Weber – Leibniz Universität Hannover
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Regulatory and Solvency Capital

• The role of capital

– Buffer for potential losses

– that protects customers, policy holders and other counterparties

• The role of the balance sheet

– Market-consistent valuation of all assets and liabilities

• Simple example: Solvency II

– SCR = Solvency Capital Requirement

– Key goal: Limit one-year probability of ruin to at most 0.5%.

Stefan Weber – Leibniz Universität Hannover
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SCR
The SCR corresponds to the economic capital a (re)insurance undertaking needs to

hold in order to limit the probability of ruin to 0.5%, i.e. ruin would occur once

every 200 years. . .

The SCR is calculated using Value-at-Risk techniques, either in accordance with

the standard formula, or using an internal model: all potential losses, including

adverse revaluation of assets and liabilities, over the next 12 months are to be

assessed. The SCR reflects the true risk profile of the undertaking, taking account

of all quantifiable risks, as well as the net impact of risk mitigation techniques.

(Proposal for a Directive of the European Parliament and of the Council on the

taking-up and pursuit of the business of Insurance and Reinsurance - Solvency II,

COMMISSION OF THE EUROPEAN COMMUNITIES, Brussels, 10.7.2007)
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The Balance Sheet

Assets

• Market value of all assets

Liabilities

• Economic capital

– i.e. SCR + Free Surplus

• Non-hedgeable liabilities

– Best Estimate

– Risk Margin

• Hedgeable liabilities

– Market-Consistent Value

Stefan Weber – Leibniz Universität Hannover
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SCR in a Simplified Internal Model

• Time: t = 0, 1

• Value of assets: At, t = 0, 1

• Value of liabilities: Lt, t = 0, 1

• Capital (NAV): Et = At − Lt, t = 0, 1

P (E1 ≤ 0) ≤ α

⇔ E1 ∈ AV@Rα

⇔ SCR := V@Rα(∆A1 −∆L1) ≤ E0,

with ∆A1 = A1 −A0, ∆L1 = L1 − L0.

Stefan Weber – Leibniz Universität Hannover
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Alternative Risk Measures

• Model for one time period as in Solvency II: t = 0, 1

• X is space of positions at time 1 modeled by random variables (P&L)

Risk measures

ρ : X → R

• Monotonicity: If X ≤ Y , then ρ(X) ≥ ρ(Y ).

• Cash invariance: If m ∈ R, then ρ(X +m) = ρ(X)−m.

A risk measure is a statistics that summarizes certain properties of

random future balance sheets.

Risk measures like V@R focus on the downside risk.

Stefan Weber – Leibniz Universität Hannover
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Capital requirements

• A position X ∈ X is acceptable, if ρ(X) ≤ 0.

The collection A of all acceptable positions is the acceptance set.

• ρ is a capital requirement, i.e.

ρ(X) = inf {m ∈ R : X +m ∈ A} .

Example

V@Rλ(X) = inf{m ∈ R : P [m+X < 0] ≤ λ}

“Smallest monetary amount that needs to be added to a position

such that the probability of a loss becomes smaller than λ.”

Stefan Weber – Leibniz Universität Hannover
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Value at Risk in the Media

“David Einhorn, who founded Greenlight Capital, a prominent hedge fund, wrote not

long ago that VaR was

’relatively useless as a risk-management tool and potentially catastrophic

when its use creates a false sense of security among senior managers and

watchdogs. This is like an air bag that works all the time, except when you

have a car accident.’ ”

“Nicholas Taleb, the best-selling author of ’The Black Swan,’ has crusaded against

VaR for more than a decade. He calls it, flatly, ’a fraud.’ ”

(“Risk Mismanagement”, New York Times, 2. January 2009)

Stefan Weber – Leibniz Universität Hannover
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Diversification
Semiconvexity:

ρ(αX + (1− α)Y ) ≤ max(ρ(X), ρ(Y )) (α ∈ [0, 1]).

=⇒

Convexity (Föllmer & Schied, 2002):

ρ(αX + (1− α)Y ) ≤ αρ(X) + (1− α)ρ(Y ) (α ∈ [0, 1]).

Positive homogeneity:

ρ(λX) = λρ(X) (λ ≥ 0).

Geometric properties of the acceptance set

• ρ convex ⇔ A convex.

• ρ positively homogeneous ⇔ A cone.

Stefan Weber – Leibniz Universität Hannover
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Average Value at Risk

AV@Rλ(X) =
1

λ

∫ λ

0

V@Rγ(X)dγ

Properties

• coherent (i.e. convex and positively homogeneous)

• sensitive to large losses

• basis of Swiss Solvency test and Basel III

• common alternative to V@R in practice

• distribution-based and continuous from above

• building block of large class of risk measures

Stefan Weber – Leibniz Universität Hannover
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Utility-based Shortfall Risk (UBSR)

` : R→ R convex loss function, z interior point of the range of `.

The acceptance set is defined as

A = {X ∈ L∞ : EP [`(−X)] ≤ z}

A induces a convex risk measure ρ:

ρ(X) = inf{m ∈ R : X +m ∈ A}

Simple formula

Shortfall risk ρ(X) is given by the unique root s∗ of the function

f(s) := E[`(−X − s)]− z.

Stefan Weber – Leibniz Universität Hannover
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Utility-based Shortfall Risk (UBSR)

Properties

• convex

• sensitive to large losses

• distribution-based and continuous from above

• easy to estimate and implement

• elicitable

Stefan Weber – Leibniz Universität Hannover
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Special case: Expectiles

• Expectiles are precisely the class of coherent UBSRs (W., 2006).

• Acceptability means that the ratio of expected gains and expected losses

is larger than some given threshold.

Formal definition of expectiles

The acceptance set is defined as

A =

{
X ∈ L∞ :

EP [X+]

EP [X−]
≥ γ

}
A induces a coherent risk measure ρ:

ρ(X) = inf{m ∈ R : X +m ∈ A}

Stefan Weber – Leibniz Universität Hannover
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Sensitivity to the Downside Risk
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Stefan Weber – Leibniz Universität Hannover



Modeling and Measuring Systemic Risk – Bowles Symposium 2016, Atlanta 45

Application to SCR
• Time: t = 0, 1

• Value of assets: At, t = 0, 1

• Value of liabilities: Lt, t = 0, 1

• Capital (NAV): Et = At − Lt, t = 0, 1

ρ(E1) ≤ 0

⇔ E1 ∈ Aρ
⇔ SCR := ρ(∆A1 −∆L1) ≤ E0,

with ∆A1 = A1 −A0, ∆L1 = L1 − L0.

Examples

Suitable risk measures are e.g. AV@R (SST & Basel III) and expectiles.
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Back to Part II: Measures of Systemic Risk

(i) Measures of systemic risk

• General definition on the basis of acceptance sets and system models

(ii) Cash-flow and value models

• Aggregration functions

• Connection to network models

Stefan Weber – Leibniz Universität Hannover
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The Basic Ingredients
Consider a one-period economy with n entities.

(i) Cash-flow or value model (CVM)

• Y = (Yk)k∈Rn non-decreasing random field

– For each capital allocation k = (ki)i=1,2,...,n the random variable Yk
captures the relevant stochastic outcome

– The topological vector space of suitable random variables is denoted

by X

(ii) Objectives of a financial regulator

• A ⊆ X set of random variables

– Each element of A is acceptable from the point of view of a

regulatory authority

– Mathematically: an acceptance set of a scalar monetary risk

measure
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Systemic Risk Measures – Definition

Systemic risk is measured by the set of allocations of additional capital

that lead to acceptable outcomes.

Definition 1

Letting P(Rn;Rn+) := {B ⊆ Rn | B = B + Rn+} be the collection of upper

sets with ordering cone Rn+, we call the function

R : Y × Rn → P(Rn;Rn+)

a systemic risk measure, if for some acceptance set A ⊆ X of a scalar

monetary risk measure:

R(Y; k) = {m ∈ Rn | Yk+m ∈ A}.
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Systemic Risk Measures

Elementary Properties

(i) Cash-invariance: R(Y ; k) +m = R(Y ; k −m)

(ii) Monotonicity: Y ≥ Z ⇒ (∀k ∈ Rn : R(Y ; k) ⊇ R(Z; k))

−→

Further Results

Diversification, robust representations, efficient cash-invariant allocation rules,

algorithms,...

Related Literature

• Feinstein, Rudloff & W. (2015)

• Biagini, Fouque, Frittelli & Meyer-Brandis (2015)
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Simple Examples of CVMs

Deterministic Transformations

• X ∈ L0(Ω;Rn) factor vector

• Λ : Rn → R increasing aggregation function

=⇒

(i) CVM insensitive to capital levels: Yk = Λ(X) +
∑n

i=1 ki

(ii) CVM sensitive to capital levels: Yk = Λ(X + k)

Remark: CVMs are not necessarily deterministic transformations of a

finite-dimensional factor vector, see Feinstein, Rudloff & W. (2015)
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Simple Examples of CVMs (2)
Ad hoc choices of aggregation functions

(i) System-wide profits and losses: Λsum(x) =
∑n

i=1 xi

(ii) System-wide losses: Λloss(x) =
∑n

i=1−x−i

(iii) Multivariate shortfall risk: ΛSR(x) = −`(−x) for some multi-variate loss

function ` as in Armenti, Crépey, Drapeau & Papapantoleon (2016)

Endogenous aggregation functions

• Typically, the relevant input-output-mechanisms of systems are more

complicated than these ad hoc choices.

• This might require a derivation of aggregation functions or, more

generally, of CVMs in financial network models.

• A simple example of a CVM in a network system might take the form

Yk = Λ(X,k)
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Simple Examples of CVMs (3)
Consider the comprehensive model of a financial network from the first part of

the talk.

• k ∈ Rn additional capital in the banking system

• allocated to the random cash assets r ∈ L0(Ω;Rn) and the random illiquid

assets s ∈ L0(Ω;Rn) according to some rule

• (p∗(k),q∗(k)) is corresponding random largest clearing equilibrium which

can be computed scenario-wise

=⇒

The total losses on external liabilities are given by

Yk =
n∑

i=1

(1−
n∑

i=1

Πij) · (p∗i (k)− p̄i)
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Measures of Systemic Risk
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Capital requirements for core and periphery banks as a function of fire sales.
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Efficient Allocation Rules

Figure 1: Illustration of a minimal point k∗ of an upper set with the orthant k∗ + R2
+ in blue.
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Efficient Allocation Rules (2)

Many proposed risk measures from the literature are special cases of the cost

of efficient allocation rules:

• Chen, Iyengar & Moallemi (2013), see also Kromer, Overbeck & Zilch

(2016)

• Brunnermeier & Cheridito (2013)

• Biagini, Fouque, Frittelli & Meyer-Brandis (2015)

• Armenti, Crépey, Drapeau & Papapantoleon (2016)

In addition, CoV@R of Adrian & Brunnermeier (2016) can be reformulated as a

special case of our systemic risk measure.
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Efficient Allocation Rules – Definition

Definition 2 Let P(Rl) be the power set of Rl. A mapping

k∗ : Y × Rl → P(Rl) is called a cash-invariant efficient allocation rules (EAR)

associated with a systemic risk measure R, if the following properties are

satisfied:

(i) Minimal values:

k∗(Y ; k) ⊆ MinR(Y ; k)

(ii) Convex values:

k1, k2 ∈ k∗(Y ; k) ⇒ αk1 + (1− α)k2 ∈ k∗(Y ; k)

(iii) Cash-invariance:

k∗(Y ; k) +m = k∗(Y ; k −m)
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Efficient Allocation Rules – Characterization

Lemma 1 Let R : Y × Rl → P(Rl;Rl+) be a systemic risk measure with

convex values. For w : Y → Rl++ such that w(Y ) ∈ reccR(Y ; 0)+, the

set-valued mapping

k̂(Y ; k) = arg min

{
l∑
i=1

w(Y )imi | m ∈ R(Y ; k)

}
(1)

defines an EAR.

All EARs k∗ as defined above are included in EARs k̂ of form (1), i.e.

k∗(Y ; k) ⊆ k̂(Y ; k) for all Y ∈ Y and k ∈ Rl.

• The lemma provides examples of EARs via a specific choice of the

“regulatory price of capital” w.
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Case Study
• Framework of Eisenberg & Noe (2001):

only local interaction in the network

• Tiered graph:

– Connections are randomly generated, probabilities within tiers and

between tiers are fixed

– Size of obligations within tiers and between tiers along connections are

fixed

• 2 Tiers/Groups: few firms with large obligations, many firms with small

obligations

• Further ingredients:

random endowments, acceptance set defined by AV@R

• Comparative statics: varying the degrees of connectedness
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Fixed Intra-Group Connections
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Fixed Inter-Group Connections
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Fixed Inter-Group Connections
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Summary

(i) Comprehensive network model

• Integrates direct liabilities, fire sales, cross holdings and bankruptcy

costs

• Toy model for testing regulatory policies and their robustness

(ii) Multi-variate approach to systemic risk

• Proper risk measure instead of default counts

• Based on CVM and acceptances set

• General framework that covers many contributions from the literature

• Ideas can be applied to areas outside finance
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